171 research outputs found

    Structural analysis of ultrafast extended x-ray absorption fine structure with subpicometer spatial resolution: Application to spin crossover complexes

    Get PDF
    We present a novel analysis of time-resolved extended x-ray absorption fine structure (EXAFS) spectra based on the fitting of the experimental transients obtained from optical pump/x-ray probe experiments. We apply it to the analysis of picosecond EXAFS data on aqueous [FeII (bpy)3] 2+, which undergoes a light induced conversion from its low-spin (LS) ground state to the short-lived (τ≈650 ps) excited high-spin (HS) state. A series of EXAFS spectra were simulated for a collection of possible HS structures from which the ground state fit spectrum was subtracted to generate transient difference absorption (TA) spectra. These are then compared with the experimental TA spectrum using a least-squares statistical analysis to derive the structural change. This approach reduces the number of required parameters by cancellation in the differences. It also delivers a unique solution for both the fractional population and the extracted excited state structure. We thus obtain a value of the Fe-N bond elongation in the HS state with subpicometer precision (0.203±0.008 Å). © 2009 American Institute of Physics.This work was funded by the Swiss National Science Foundation via Contract Nos. 620–066145, 200021–107956, PP002–110464, 200020–116023, 200021–105239, and 200020-116533.Peer Reviewe

    Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing

    Get PDF
    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing setup. The beam astigmatism leads to the formation of two separate diskshaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable crosssection are successfully produced in the phosphate glass using this approach. © 2009 Optical Society of America.This work was partially supported by the Spanish Ministry of Science and Innovation under TEC2008-01183 project. A. R. and W. G. acknowledge their I3P-CSIC postdoctoral con- tracts (co-funded by the European Social Fund). D. P. and A. F. acknowledge their grants under Projects TEC 2005-00074 and TEC 2006-04538.Peer Reviewe

    Direct observation of nuclear reorganization driven by ultrafast spin transitions

    No full text
    One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3] (PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization

    In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics

    Get PDF
    The effect of nonlinear propagation on the shape of the focal volume has been assessed by in situ plasma emission imaging during the subsurface processing of a commercial phosphate glass. The sample was processed with an elliptically shaped femtosecond-laser beam at 1 kHz repetition rate and scanned transversely with respect to the writing beam axis. As a consequence, optimal conditions for minimizing undesirable nonlinear propagation effects during the production of optical waveguides by direct laser writing have been determined. Under these conditions, it is possible to induce structural transformations and still preserve the focal volume shape associated with the linear propagation regime. While at low pulse energy a single scan laser-written structure does not support a guided mode, the use of multiple scans with minimized nonlinear propagation effects enables the production of optical waveguides. The latter show a significantly improved performance in terms of the refractive index change and propagation losses when compared to single scan waveguides. © 2010 Optical Society of America.This work was partially supported by the University of Zaragoza under Project 223/88 and by the Spanish Ministry of Science and Innovation under TEC2008-01183 project. A. Ruiz de la Cruz and W. Gawelda acknowledge their I3P-CSIC postdoctoral contracts (co-funded by the European Social Fund). D. Puerto and A. Ferrer acknowledge their grants under Projects TEC 2005-00074 and TEC 2006-04538.Peer Reviewe

    Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy

    Get PDF
    The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations

    Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    Get PDF
    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2 (dimen) 4 ] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis
    corecore