78 research outputs found

    Pressure dependence of the Curie temperature in Ni2MnSn Heusler alloy: A first-principles study

    Full text link
    The pressure dependence of electronic structure, exchange interactions and Curie temperature in ferromagnetic Heusler alloy Ni2MnSn has been studied theoretically within the framework of the density-functional theory. The calculation of the exchange parameters is based on the frozen--magnon approach. The Curie temperature, Tc, is calculated within the mean-field approximation by solving the matrix equation for a multi-sublattice system. In agrement with experiment the Curie temperature increased from 362K at ambient pressure to 396 at 12 GPa. Extending the variation of the lattice parameter beyond the range studied experimentally we obtained non-monotonous pressure dependence of the Curie temperature and metamagnetic transition. We relate the theoretical dependence of Tc on the lattice constant to the corresponding dependence predicted by the empirical interaction curve. The Mn-Ni atomic interchange observed experimentally is simulated to study its influence on the Curie temperature.Comment: 8 pages, 8 figure

    Magnetoelectric Effect and Spontaneous Polarization in HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4

    Full text link
    The thermodynamic, magnetic, dielectric, and magnetoelectric properties of HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 are investigated. Both compounds show a second order Ne\'{e}l transition above 30 K and a first order spin reorientation transition below 10 K. HoFe3_3(BO3_3)4_4 develops a spontaneous electrical polarization below the Ne\'{e}l temperature (TN_N) which is diminished in external magnetic fields. No magnetoelectric effect could be observed in HoFe3_3(BO3_3)4_4. In contrast, the solid solution Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 exhibits both, a spontaneous polarization below TN_N and a magnetoelectric effect at higher fields that extends to high temperatures. The superposition of spontaneous polarization, induced by the internal magnetic field in the ordered state, and the magnetoelectric polarizations due to the external field results in a complex behavior of the total polarization measured as a function of temperature and field.Comment: 12 pages, 15 figure

    Role of the conduction electrons in mediating exchange interactions in Heusler alloys

    Get PDF
    Because of large spatial separation of the Mn atoms in Heusler alloys the Mn 3d states belonging to different atoms do not overlap considerably. Therefore an indirect exchange interaction between Mn atoms should play a crucial role in the ferromagnetism of the systems. To study the nature of the ferromagnetism of various Mn-based semi- and full-Heusler alloys we perform a systematic first-principles calculation of the exchange interactions in these materials. The calculation of the exchange parameters is based on the frozen-magnon approach. The calculations show that the magnetism of the Mn-based Heusler alloys depends strongly on the number of conduction electrons, their spin polarization and the position of the unoccupied Mn 3d states with respect to the Fermi level. Various magnetic phases are obtained depending on the combination of these characteristics. The Anderson's s-d model is used to perform a qualitative analysis of the obtained results. The conditions leading to diverse magnetic behavior are identified. If the spin polarization of the conduction electrons at the Fermi energy is large and the unoccupied Mn 3d states lie well above the Fermi level, an RKKY-type ferromagnetic interaction is dominating. On the other hand, the contribution of the antiferromagnetic superexchange becomes important if unoccupied Mn 3d states lie close to the Fermi energy. The resulting magnetic behavior depends on the competition of these two exchange mechanisms. The calculational results are in good correlation with the conclusions made on the basis of the Anderson s-d model which provides useful framework for the analysis of the results of first-principles calculations and helps to formulate the conditions for high Curie temperature.Comment: 16 pages, 9 figures, 2 table

    Material-Specific Investigations of Correlated Electron Systems

    Full text link
    We present the results of numerical studies for selected materials with strongly correlated electrons using a combination of the local-density approximation and dynamical mean-field theory (DMFT). For the solution of the DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed. All simulations were performed on the supercomputer HLRB II at the Leibniz Rechenzentrum in Munich. Specifically we have analyzed the pressure induced metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the fluctuating-valence elemental metal Yb, and the spectral properties of a covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in Science and Engineering, Garching 2009" (Springer

    Anomalous high-temperature superconductivity in YH6_6

    Get PDF
    Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here we report the synthesis of yttrium hexahydride Im3m-YH6_6 that demonstrates the superconducting transition with Tc_c = 224 K at 166 GPa, much lower than the theoretically predicted (>270 K). The measured upper critical magnetic field Bc_c2_2(0) of YH6_6 was found to be 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of Tc_c in yttrium deuteride YD6_6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements showed that the critical current Ic_c and its density Jc_c may exceed 1.75 A and 3500 A/mm2^2 at 0 K, respectively, which is comparable with the parameters of commercial superconductors, such as NbTi and YBCO. The superconducting density functional theory (SCDFT) and anharmonic calculations suggest unusually large impact of the Coulomb repulsion in this compound. The results indicate notable departures of the superconducting properties of the discovered YH6_6 from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories.Comment: arXiv admin note: text overlap with arXiv:1902.1020

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    corecore