18 research outputs found

    Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures

    Get PDF
    The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle

    P-T phase diagram of iron arsenide superconductor NdFeAsO0.88F0.12

    Full text link
    NdFeAsO0.88F0.12 belongs to the recently discovered family of high-TC iron-based superconductors. The influence of high pressure on transport properties of this material has been studied. Contrary to La-based compounds, we did not observe a maximum in TC under pressure. Under compression, TC drops rapidly as a linear function of pressure with the slope k = -2.8 \pm 0.1 K / GPa. The extrapolated value of TC at zero pressure is about TC (0) = 51.7 \pm 0.4 K. At pressures higher than ~18.4 GPa, the superconducting state disappears at all measured temperatures. The resistance changes slope and shows a turn-up behavior, which may be related to the Kondo effect or a weak localization of two-dimensional carriers below ~45 K that is above TC and thus competing with the superconducting phase. The behavior of the sample is completely reversible at the decompression. On the bases of our experimental data, we propose a tentative P-T phase diagram of NdFeAsO0.88F0.12

    Anomalous high-temperature superconductivity in YH6_6

    Get PDF
    Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here we report the synthesis of yttrium hexahydride Im3m-YH6_6 that demonstrates the superconducting transition with Tc_c = 224 K at 166 GPa, much lower than the theoretically predicted (>270 K). The measured upper critical magnetic field Bc_c2_2(0) of YH6_6 was found to be 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of Tc_c in yttrium deuteride YD6_6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements showed that the critical current Ic_c and its density Jc_c may exceed 1.75 A and 3500 A/mm2^2 at 0 K, respectively, which is comparable with the parameters of commercial superconductors, such as NbTi and YBCO. The superconducting density functional theory (SCDFT) and anharmonic calculations suggest unusually large impact of the Coulomb repulsion in this compound. The results indicate notable departures of the superconducting properties of the discovered YH6_6 from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories.Comment: arXiv admin note: text overlap with arXiv:1902.1020

    PPMS-based set-up for Raman and luminescence spectroscopy at high magnetic field, high pressure and low temperature

    Get PDF
    We present an experimental set-up permitting Raman and luminescence spectroscopy studies in a commercial Physical Properties Measurement System (PPMS) from Quantum Design. Using this experimental set-up, gaseous, liquid and solid materials, in bulk or thin film form, may be investigated. The set-up is particularly suitable for the study of the spin-lattice coupling in strongly correlated oxide materials utilizing several different stimuli, e.g. magnetic and electric fields, high pressure and low temperatures. Details for the Raman extension, sample holder assembly and optical design, as well as data acquisition and measurement routine are described. Finally, we present exemplary results collected using the set-up, measured on reference materials, as well as on a correlated transition metal oxide

    Pressure-induced spin transition and evolution of the electronic excitations of FeBO

    No full text
    A high-pressure resonant inelastic x-ray scattering (RIXS) of FeBO3\text{FeBO}_{3} at the Fe K pre-edge has been carried out to study the evolution of electronic excitations through the pressure-induced spin transition. Systematic peak shifts with insignificant peak width change are observed with increasing pressure in the high-spin state. An electronic transition occurs in tandem with the high-spin to low-spin transition, observed as the emergence of multiple new low-energy peaks in the spectra. The energy gap is reduced due to these low-energy peaks, not a peak width broadening. The observed electronic excitations are associated with dd excitations, which are calculated using a full-multiplet theory. We consider changes in crystal-field splitting and covalency to explain the observed peak shifts in the high-spin state. The new peaks that emerge upon the high-to low-spin transition are compared with dd excitations for the low-spin configuration

    The first-order structural transition in NiO at high pressure

    No full text
    The physics of NiO under applied pressure has long been debated and the material has been a key contributor to our understanding of Mott insulators and strongly correlated materials more generally. Here, the authors perform high-pressure X-ray diffraction measurements reporting a pressure-induced structural phase transition for NiO, which they suggest is linked with the metal-insulator transition of this system
    corecore