989 research outputs found
Televisione. Sequestro e dissequestro della storia
Born together with the history it narrates, television takes over the role of power supply and archive of
national and individual memory. At the same time, Tv is expression and manifestation of our
memories and fundamental component of identity, like no nedium has done. All this allows to affirm
that current affairs are turning into our history as a result of speed of TV. The accompanying path
between the social history of the country and television storytelling are the focus of this article. After a
review of the possible contamination between history and television, this essay focuses on the
narrative function of TV and the high incidence of this medium on the visibility or cancellation of
events, social facts and characters.To demonstrate the responsibility of TV over the historicizing
process and the impact on collective memory, in the second part of this essay we have been brought
into focu
Human Motion Trajectory Prediction: A Survey
With growing numbers of intelligent autonomous systems in human environments,
the ability of such systems to perceive, understand and anticipate human
behavior becomes increasingly important. Specifically, predicting future
positions of dynamic agents and planning considering such predictions are key
tasks for self-driving vehicles, service robots and advanced surveillance
systems. This paper provides a survey of human motion trajectory prediction. We
review, analyze and structure a large selection of work from different
communities and propose a taxonomy that categorizes existing methods based on
the motion modeling approach and level of contextual information used. We
provide an overview of the existing datasets and performance metrics. We
discuss limitations of the state of the art and outline directions for further
research.Comment: Submitted to the International Journal of Robotics Research (IJRR),
37 page
Stabilizing quantum metastable states in a time-periodic potential
Metastability of a particle trapped in a well with a time-periodically
oscillating barrier is studied in the Floquet formalism. It is shown that the
oscillating barrier causes the system to decay faster in general. However,
avoided crossings of metastable states can occur with the less stable states
crossing over to the more stable ones. If in the static well there exists a
bound state, then it is possible to stabilize a metastable state by
adiabatically increasing the oscillating frequency of the barrier so that the
unstable state eventually cross-over to the stable bound state. It is also
found that increasing the amplitude of the oscillating field may change a
direct crossing of states into an avoided one.Comment: 7 pages, 6 figure
Directed transport and localization in phase-modulated driven lattices
We explore the dynamics of non-interacting particles loaded into a
phase-modulated one-dimensional lattice formed by laterally oscillating square
barriers. Tuning the parameters of the driven unit cell of the lattice selected
parts of the classical phase space can be manipulated in a controllable manner.
We find superdiffusion in position space for all parameters regimes. A directed
current of an ensemble of particles can be created through locally breaking the
spatiotemporal symmetries of the time-driven potential. Magnitude and direction
of the current are tunable. Several mechanisms for transient localization and
trapping of particles in different wells of the driven unit cell are presented
and analyzed
Homography-based ground plane detection using a single on-board camera
This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments
Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study
We have performed angle-dependent near-edge x-ray absorption fine structure
measurements in the Auger electron yield mode on the correlated
quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the
orientation of the molecules in the topmost surface layer. We find that the
tilt angles of the molecules with respect to the one-dimensional axis are
essentially the same as in the bulk. Thus we can rule out surface relaxation as
the origin of the renormalized band widths which were inferred from the
analysis of photoemission data within the one-dimensional Hubbard model.
Thereby recent theoretical results are corroborated which invoke long-range
Coulomb repulsion as alternative explanation to understand the spectral
dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure
Simple proof of gauge invariance for the S-matrix element of strong-field photoionization
The relationship between the length gauge (LG) and the velocity gauge (VG)
exact forms of the photoionization probability amplitude is considered. Our
motivation for this paper comes from applications of the Keldysh-Faisal-Reiss
(KFR) theory, which describes atoms (or ions) in a strong laser field (in the
nonrelativistic approach, in the dipole approximation). On the faith of a
certain widely-accepted assumption, we present a simple proof that the
well-known LG form of the exact photoionization (or photodetachment)
probability amplitude is indeed the gauge-invariant result. In contrast, to
obtain the VG form of this probability amplitude, one has to either (i) neglect
the well-known Goeppert-Mayer exponential factor (which assures gauge
invariance) during all the time evolution of the ionized electron or (ii) put
some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16
October 2006 to J. Phys. A and rejected. This is the extended version (with 2
figures), which is identical to the paper published online on 12 December
2007 in Physica Script
Decay versus survival of a localized state subjected to harmonic forcing: exact results
We investigate the survival probability of a localized 1-d quantum particle
subjected to a time dependent potential of the form with
or . The particle is
initially in a bound state produced by the binding potential . We
prove that this probability goes to zero as for almost all values
of , , and . The decay is initially exponential followed by a
law if is not close to resonances and is small; otherwise
the exponential disappears and Fermi's golden rule fails. For exceptional sets
of parameters and the survival probability never decays to zero,
corresponding to the Floquet operator having a bound state. We show similar
behavior even in the absence of a binding potential: permitting a free particle
to be trapped by harmonically oscillating delta function potential
Logarithmic two-loop corrections to the Lamb shift in hydrogen
Higher order logarithmic corrections to the
hydrogen Lamb shift are calculated. The results obtained show the two-loop
contribution has a very peculiar behavior, and significantly alter the
theoretical predictions for low lying S-states.Comment: 14 pages, including 2 figures, submitted to Phys. Rev. A, updated
with minor change
- …
