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Abstract: This study presents a robust method for ground plane detection in vision-based systems with a non-
stationary camera. The proposed method is based on the reliable estimation of the homography between 
ground planes in successive images. This homography is computed using a feature matching approach, which 
in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion 
calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework 
is presented. This framework provides predictions of the ground plane transformation matrix that are 
dynamically updated with new measurements. The method is specially suited for challenging environments, in 
particular traffic scenarios, in which the information is scarce and the homography computed from the images 
is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous 
measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at 
each instant. It is based on the evaluation of the difference between the predicted and the observed 
transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, 
an example is provided on how to use the information extracted from ground plane estimation to achieve 
object detection and tracking. The method has been successfully demonstrated for the detection of moving 
vehicles in traffic environments. 

1 Introduction 
Computer vision-based analysis has been a central research 
line to attain scene characterisation for the last decades. 
Particularly, many works have been devoted to solve 
problems such as obstacle detection, road detection, ego-
motion estimation, localisation etc. when the observer is 
moving. In general, the moving platform and the objects in 
the scene are assumed to be moving along a planar surface 
(e.g. the road). The detection of the region of the image 
corresponding to this surface is a basic step towards 
the resolution of the aforementioned problems, especially 
object detection. Therefore several works have been 
proposed that aim at estimating the ground plane as the 
basis for a posterior object detection on that plane [1-3]. 
Usually, they use a calibrated stereo rig that allows for 
a direct estimation of the ground region [4, 5]. 
Nonetheless, stereo systems have a number of disadvantages 
compared to monocular systems, especially in terms of cost 
and flexibility. 

As for monocular systems, methods accounted in the 
literature require a complete estimation of the 3D ground 
plane parameters as well as the 3D camera motion 
parameters (ego-motion) [1]. Then they compute the 
homography of the ground plane between two consecutive 
images based on the expression of the homography 
between two planes. In this context, the use of inertial 
sensors (e.g. odometers, speedometers, accelerometers, 
gyroscopes) has been used in numerous works to facilitate 
ego-motion estimation [6, 7]. However, this information 
may not be available in all applications, and even if 
available it might be inaccurate because of drifts [5, 8], thus 
it is interesting and challenging to capitalise on all 
the information attainable via pure vision analysis. 
Unfortunately, visual ego-motion estimation is a complex 
task and still an active research line [8-10]. 

In this paper, a purely vision-based method using a single 
on-board camera is proposed for the estimation of the ground 
plane. The proposed method does neither require prior 

mailto:jal@gti.ssr.upm.es


ego-motion estimation nor explicit extraction of the 3D 
ground plane parameters. Alternatively, it is based on a 
robust computation of the homography of the ground plane 
between two consecutive images from reliable ground plane 
point correspondences. As opposed to the methods 
accounted in the literature, which estimate the homography 
independently for every image frame, the proposed method 
takes advantage of the temporal coherence of the interframe 
plane-to-plane homography to construct a probabilistic 
prediction framework based on Kalman filtering for the 
computation of the homography. 

In the literature there are plenty of works that use Kalman 
theory for background estimation and foreground detection 
[11, 12]. These works model the background dynamics of 
each pixel with a Kalman filter in order to continuously 
adapt to variations in the background, for example because 
of illumination changes. Extended Kalman filtres have also 
been used for vehicle modelling in traffic surveillance 
scenarios [13]. Here we propose to extend the use of 
Kalman theory to non-stationary settings. In this case, the 
Kalman filter will be used to smoothly adapt to changes in 
the plane-to-plane homography so that a reliable estimation 
of the ground plane can be attained at every time point. 

Ground plane detection is the basis for the posterior 
detection of objects moving on that plane. In this work, an 
example is given on how the ground plane information can 
be used to detect and track objects. This example illustrates 
the potential of the method proposed for ground plane 
estimation and its applicability to object detection. The 
method may be used in any environment featuring a 
ground plane, although this paper focuses on its application 
to traffic environments. 

2 Overview 
The basic idea behind the proposed approach is that pixels 
that belong to the ground plane have coherent motion 
patterns when the acquisition platform (e.g. the vehicle) is 
moving. On the other hand, when moving objects appear 
on the ground plane, those pixels of the objects that belong 
to this plane will present a non-coherent motion compared 
with the rest of the pixels in the plane. The motion of the 
ground plane points is to be characterised by the planar 
homography between two consecutive views of the scene. 
This homography is mathematically expressed by [14] 

H = K(R + RCnT/d)K'1 (1) 

where K is the camera calibration matrix, n is the normal 
vector of the ground plane, R and C are the relative 
rotation and translation between views and d is the distance 
between the camera and the ground plane. Most 
homography-based approaches found in the literature aim 
to compute the parameters in (1) so as to obtain an 
analytical expression of the homography for every instant. 
However, this involves solving two complex problems: 

ego-motion estimation and 3D ground plane extraction. 
Ego motion is usually derived from feature correspondences 
between images [2, 3]. However, in order to compute the 
ego-motion only features corresponding to static objects 
should be taken into account. Hence, a method has to be 
defined first to filter out features belonging to moving 
objects [2]. On the other hand, and regarding particularly 
the traffic scenario, roads tend to contain very few feature 
points, while many points appear in the background objects 
(buildings, trees etc.) and moving objects (which in turn 
aggravates the first problem). The non-homogeneous 
distribution of feature points jeopardises the accuracy of the 
motion estimation. 

Alternatively, in this work a new method for homography 
calculation is proposed to address the aforementioned 
problems. First, the method calculates the planar 
homography directly from feature correspondences rather 
than previously computing ego-motion. Then, in contrast 
to existing methods, which deliver an independent 
calculation of the homography for every instant, the 
method presented herein involves a linear data estimation 
framework that provides a time-filtered estimation of the 
homography. In addition, an outlier rejection technique is 
built upon this estimation framework, which removes 
erroneous measurements based on the computation of the 
spectral norm of the matrix of differences. Finally, 
alignment of successive images is achieved using this 
homography and thus the ground region can be detected. 

3 Ground plane estimation 
As explained above, homography calculation for every pair of 
consecutive frames is based on feature correspondences. The 
first requisite is therefore to find a set of reliable feature points 
lying on the ground plane. Usually, corner detectors (e.g. 
Harris, KLT) are utilised to extract features, followed by a 
robust estimation technique (i.e. RANSAC) in which the 
dominant homography is estimated [2]. However, this 
approach is not suitable for some environments (e.g. traffic 
scenarios), since such techniques would render few points 
on the homogeneous road compared to moving objects and 
other objects on the background, which have richer corner 
contents. Consequently, the ground plane homography 
would probably not be dominant. Here, we propose to use 
some a priori knowledge of the scenario so that it is 
possible to obtain feature points that belong to the ground 
plane. 

In effect, the observation of feature points in the ground 
plane depends on the nature of the specific environment, 
and therefore the procedure to obtain ground plane feature 
points must be designed according to it. For instance, in 
this work, a priori knowledge lies on the existence of lane 
markings painted on the road. Hence, a lane marking 
detector as in [15] is used to first localise the regions 
containing lane markings, and then feature correspondences 
are sought within these regions. In contrast, in indoors 



robot navigation applications the texture of the surface will 
probably render these correspondences. This can be easily 
extended to other man-made environments, which typically 
contain sets of ortho-parallel lines whose structure may be 
used as prior information. Even for relatively homogeneous 
surfaces, techniques exist that are able to produce 
correspondences between images, such as SIFT [16]. In 
many cases the extracted feature correspondences will be 
few or imprecise. However, the robustness of the prediction 
framework compensates for the inherent inaccuracy of the 
calculated instantaneous homography. 

3.1 Homography estimation framework 
The transformation of points on the ground plane between 
images at times k — 1 and k is given by a planar 
homography (see (1)) as follows 

Figure 1 Relative pose of camera at time points t± and t2 

with respect to the world coordinate system (that has its 
origin at the position of the camera at tt) and to the 
plane TT0- In the figure Rc is assumed to be the identity 
matrix for simplicity 

respectively 

Hx •i-l (2) 

P, = KRC[I\Q] 

P2 = KRcRx(a)R(p)[I\ ~ C2] 

where xk and the homogeneous coordinates of 
the features in the current and the previous image, 
respectively. The planar homography H in (1) consists of 
eight independent coefficients. Hence at least eight 
equations (i.e. four-point correspondences) are needed to 
solve the linear system [14]. The homography may thus be 
computed if four or more point correspondences are found 
between images by the means referred in the previous 
section. Nevertheless, an instantaneous homography 
computed this way may be corrupted because of inaccurate 
or erroneous correspondences. This is especially harmful 
when few points are utilised in the computation of H, as is 
the case in a traffic environment, on account of the scarce 
number of feature points on the road. 

In this work, the estimation of the homography is 
modelled as a linear process and controlled by means of a 
Kalman filter [17]. In effect, the homography between 
ground planes from frame to frame depends only on the 
position of the camera relative to the ground plane and the 
displacement and rotation of the camera. Those should 
vary slowly and thus the difference in H between successive 
frames shall be very small. 

Specifically, let us consider a vehicle moving on a flat road 
plane TT0, as shown in Fig. 1. The road plane has coordinates 
7r0 = [n , d) , where n = (0, 1, 0) . The camera looks 
forward to the road with a small initial rotation, Rc, with 
respect to the world coordinate system. If we consider a 
vehicle heading forward at time tly then at time t2 a 
rotation Ry{fi) may have occurred around the Y-axis with 
a yaw angle /3, for example, if the vehicle changes lane or 
takes a curve. Additionally, a rotation Rx(a) around the 
X-axis models changes in the pitch angle a because of 
possible car bumping. The roll angle is assumed to be zero. 
Then, the camera projection matrices at times tx and t2 axe. 

where C2 is the camera position at time t2. If the speed of the 
vehicle is v, then -Ry{fi)C2 = t= - ( 0 , 0, l)Tv/fr, where 
fr = l/(¿2 — t\) is the frame rate. Given P1 and P2, the 
homography matrix between planes is the following [14] 

H = KRcRx(a)(R(p) - tnT/d)R;1R-1 
(3) 

Note that the homography H depends on the camera 
calibration matrix K. This contains the internal camera 
parameters and is thus specific for each camera model. In 
order to detach the analysis from the specific camera and to 
build a general rule for the algorithm parameters, here we 
define a normalised homography, H, which removes the 
dependency on K, as 

H K ^HK RcRx(a)(R<l3) tn ld)R~X 
(4) 

In this work we will refer the main definitions in the analysis 
framework to the normalised homography H to achieve the 
maximum degree of generality, although analogous 
derivations can also be done using H and the known K of 
the specific camera. Typically, the camera rotations are 
small, thus Rx — Ry{f5) — I and the normalised 
homography is close to 

H = Rc(I-tn
T/d)R; (5) 

As will be shown in Section 3.2, even when rotations occur, 
the variation in the homography between successive frames 
is small. In addition, a Kolmogorov- Smirnov test [18] 
with a typical significance level of 5% has been performed 
over the elements of the homography matrix in order to 
evaluate the adequacy of the data to a Gaussian distribution. 
The test supports the Gaussianity hypothesis. Hence, H is 
introduced into a Kalman filter in which the state vector xk 

is composed of the rows h.- of H. The static process is thus 



given by a position-only model with an identity transition 
matrix 

xk = (bxb2b3)
T 

A = I9x9 (6) 

xk=Axk-\ + 'wk-\ 

where nvk is a Gaussian distribution modelling the process 
noise. In turn, the measurement vector takes the values of 
the homography matrix computed from the linear equation 
system given by the set of corner correspondences in (2). 
This must be normalised as in (4). Let us denote the 
instantaneous homography matrix from (2) as H\ and the 
normalised instantaneous matrix as H . The measurement 
vector is composed of the rows h'- of H 

zk = (h\h2h\Y 

B = I9x9 (7) 

zk = Bxk + vk 

where vk is a Gaussian distribution, independent of nvk, 
modelling the measurement noise. Note that some of the 
instantaneous measurement matrices may be incorrect 
because of inconsistent correspondences. However, the 
linear filtering method used renders a prediction of the state 
vector, that is, the elements of the homography. Following 
the notation in [17] the prediction of the state vector xk, 
denoted by ScJ, is obtained from the estimate of the state 
vector in the previous instant, xk_x, as 

x¿ = Axk_x (8) 

The predicted state vector contains the expected values of 
the elements of the homography matrix (hereafter the term 
homography will be referred to the normalised homography, 
unless otherwise stated). Analogously to (6), and using a 
notation coherent with [17], let ScJ be rewritten as 
ScJ = (hxh2h¡). We define a predicted homography matrix, 
Hp, built up with the elements of x¿ 

3.2 Homography update rule 
Clearly, a rule may be constructed to compare the 
instantaneous measurement of the homography with the 
predicted homography. Accordingly, homographies that 
significantly differ from the expected transformation can be 
removed. For this purpose we make use of a norm of a 
matrix induced by the vectorial norm of a Euclidean space, 
denoted two-norm or spectral norm. This norm is a natural 
extension of the concept of norm for a vector, and gives a 
measure of the magnitude of a matrix. Namely, the two-
norm of a matrix A is given by its largest singular value or 

equivalently by [19] 

\\A\\2 = yJKJA^A) (10) 

where Amax is the biggest eigenvalue of A and A denotes the 
conjugate transpose oí A. W e apply the induced two-norm to 
the matrix difference between the measured and the 
predicted homographies. Only those homographies whose 
difference to the prediction has a norm below a predefined 
threshold are accepted 

ifdIT/1 - 7 / p | | < tn) = ^ update H (11) 

The threshold tn depends on the change of the velocity and 
the rotation parameters and must therefore be estimated 
according to the application. In particular, in this work the 
maximum expectable difference between homography 
matrices at times kx and k2 has been analysed for the road 
environment to set the threshold tn. Let us assume a 
velocity vx at time kx and no rotation between times kx — 1 
and kx. Then, the planar homography between times 
kx — 1 and kx is Hx = RC(I — txn

T/d)R~ as in (5), where 
tx = —(0, 0, 1) vx/fr. In turn, let us consider that the 
rotations at time k2 with respect to k2 — 1 are modelled by 
Ry{f5) and Rx(a), and the velocity is v2 = vx + Av. Hence, 
the homography H2 between planes at times k2 — 1 and k2 

is given by H2 = RcRx(a)(Ry((3) - t2n
T/d)R;\ where 

i 2 = - ( 0 , 0 , l)T(vx+Av)/fr. 

The differences in the homographies are produced by 
changes in the velocity and rotation parameters. Regarding 
velocity, most nation governments enforce a maximum 
speed limit of <z;=120km/h (33.3 m/s). As for the 
rotation parameters, a maximum rotation of a = ±5° 
around the X-axis because of bumping will be considered. 
The maximum rotation of a vehicle around the Y-axis will 
occur in curves. To find the upper bound for this rotation 
angle, let us consider a circular model of the curve with 
radius r. The difference in the orientation angle of the 
vehicle between time points k and k — 1, denoted by /3, is 
given by the tangents to the curve at the positions of the 
vehicles. Fig. 2 synthesises an aerial view of a vehicle taking 
a curve to the left. The vehicle moves from point A at time 
k — 1 to point B at time k, describing an arc of length s. 
According to standard road geometry design rules [20], the 

Figure 2 Derivation of the maximum vehicle rotation in a 
curve between successive time points 



minimum radius of curvature for motorways at a speed of 
120 km/h, assuming a side friction factor of 0.09 and a 
superelevation of 6%, is rmin = 875 m. The objective is to 
find the upper bound for /3 = s/r in a normal driving 
situation. As the rotation angle between two consecutive 
frames will be very small, let s be approximated to 
s ~ v • At The time difference between frames, At, 
depends on the frame rate, and must be well below 1 s (no 
correspondence between frames will be found beyond this 
time difference). Hence 

j3< — = -— = 0.038 rad = 2.18° (12) 
rmin «75 

In Fig. 3, \\H1 — H2\\ is analysed as a function of these 
parameters between the bounds derived above. First, 
the norm of the difference is plotted in Fig. 3a changing the 
velocity parameter and assuming zero rotation. In Fig. 3b, 
the difference is analysed for different rotation angles around 
the Y-axis, that is, rotations produced by left or right turns 
of the vehicle, at a standard speed of 100 km/h. Analogously, 
the effect of rotations in X-axis, which are due to camera 
bumping, is reflected in Fig. 3c. The joint effect of rotation in 
Y- and X-axis is shown in Fig. 3d. As can be observed, 
the largest difference occurs with a = 5°, |/3| = 3°. In 
Fig. 3e, the same figure as in (a) is plotted with a = 5°, 
|/31 = 3°. Finally, in Fig. 3f, \\H1 — H2\\ is evaluated 
for different rotation angles setting the velocity parameter to 
the lowest value within the expected range, that is, 60 km/h. 

Note that for every combination of a, /3 and Av in the 
graphics, it is always \\H1 — H2\\ < 0.1. Hence, the 
threshold tn in (11) is set to tn = 0.1 for the traffic scenario 
in highways. Using the rule in (11) with this threshold, all 
homography matrices that are within the expected range 
according to the aforementioned physical restrictions are 
accepted for updating the estimation, and the rest are 
rejected. A similar procedure must be followed to fix the 
threshold tn for any other application environment, taking 
into account its particular kinetic restrictions. 

As a result of the Kalman correction stage, an stable and 
reliable estimate, H , is obtained for the normalised 
homography. The normalisation is undone by a 
transformation complementary to (4), that is, 
He = KH K . Alignment of the current and previous 
images is achieved by warping the latter with Hc. 

An example of image warping with a planar homography is 
shown in Fig. 4. In the first row the previous and the current 
frame are displayed; below, the left column shows the 
warping of the previous image with the instantaneous 
homography H', whereas the right column corresponds to 
the warping with Hc. As can be observed, if the image is 
warped by the instantaneous homography Hl, as done in 
many approaches in the literature, the resulting image 
features a slight deformation compared to the real image 
(see Fig. Ac). Conversely, with the proposed method a 

robust estimation, 77e, of the homography is obtained, and 
hence the aligned image (see Fig. Ad) is very similar to the 
current image in the ground region. 

3.3 Ground plane region detection 
As stated in the foundation of the method, the points belonging 
to the ground plane are expected to have coherent motion 
patterns. Namely, all the static elements in the ground plane 
are projected from the previous to the current frame through 
H as in (1). Conversely, all the background elements (that are 
not on the ground plane) and the moving objects are subject 
to different transformations. Hence, the difference between 
the current image and the previous image warped with the 
estimated homography Hc is expected to be null for the static 
elements on the ground plane and non-zero for the rest of the 
image. Therefore the differences between aligned images 
delimitate the ground plane region. These differences are 
detected evaluating sum of absolute differences (SAD) 
between the current image and the previous image warped. 
Fig. Ae shows an example of the difference between the 
current frame (Fig. Ab) and the previous image warped 
(Fig. Ad). Note that moving objects (i.e. vehicles) are clearly 
distinguished by white horizontal patches that appear in their 
contact zones with the ground plane. 

Fig. 5 shows some examples of road region detection for 
traffic scenarios. To obtain road regions, images are 
scanned bottom to up in search of pixels with significant 
SAD value, which correspond to moving objects or to 
elements above the ground plane. The regions above these 
pixels do not belong to the road plane. Note as well that 
the projection of the road in the image is bounded by the 
vanishing line (i.e. the horizon) [21]. Hence, the images in 
Fig. 5 are constructed by overlaying the input image below 
the regions of significant difference within the region of 
interest (ROI; below the vanishing line) with a grey mask. 
As shown, background elements and moving objects are 
located out of the road plane region. Note that ground 
plane estimation is consequently a powerful basis for the 
attainment of object detection and tracking. Namely, the 
elements out of the ground plane may be further examined; 
in particular, different images of a sequence may be 
analysed in order to locate these elements that do not 
belong to the ground plane and that additionally have a 
shape or motion pattern expected from a moving object. 

4 Experiments and discussion 
This section aims at showing the robustness of the proposed 
method, and its applicability to object detection. Hence, an 
approach is addressed here for vehicle detection and 
tracking in order to better assess the performance of the 
method on the traffic environment, both visually and 
statistically. The straightforward approach for object 
tracking is based on Kalman filtering. In effect, the motion 
of vehicles is expected to be smooth over the ground plane, 
hence some correlation is expected between vehicle 
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Figure 3 Analysis of HH^ — H2\\ as a function of the speed of the vehicle, v, its variation, Av, and the rotation angles, a and B 

a a = ¡3 = 0°, v is a parameter 
b v = 100 km/h, a = 0°; ¡3 is a parameter 
c v = 100 km/h, ¡3 = 0°; a is a parameter 
d v = 100 km/h, a and ¡3 are parameters 
e a = 5o, \¡3\ = 3°; v is a parameter 
/ v = 60 km/h; a and ¡3 are parameters 



Figure 4 Example of homography applied to align images 

a Previous frame 
b Current frame 
c Previous frame warped with inaccurate instantaneous homography H' 
d Previous frame warped with robustly estimated homography He 

e Difference between ¡mages b and d 

positions in successive images. Therefore a linear model can 
be assumed for the evolution of the vehicle position, with a 
locally constant velocity. In this context, the bird's eye view 
of the road plane, given by the inverse perspective mapping 
(IPM) or plane rectification through image warping [22], 
can be used to model the linear motion of the vehicles, as 
explained in [23]. In this domain, the dynamic and 
observation models of the system can be written, 
respectively, as 

h = Fsk-i + nk-i 
mk = Tsk + uk 

(13) 

'h A í - / 2 0 
H 

I2 0 0 
o o I2 

where the state vector sk is composed of the information 

regarding each vehicle, that is, its position (x1, x2), velocity 
(x1; x2), width (w), and height (h) as in [23] 

(*i, 2, ™, hY (14) 

the measurement vector mk is composed of the observations 
at time k of the vehicle position and dimension, and the 
noise distributions nk and uk are independent and 
Gaussian. The position and width of the vehicles are 
obtained from the analysis of the road region estimation at 
each instant. In particular, they are given by the regions 
that do not belong to the road, that is, regions which have 
a significant SAD value, as imposed in Section 3.3. These 
regions might as well correspond to elements in the 
background, hence only the regions that have a size, shape 
and motion coherent to that expected from vehicles are 
taken into consideration. Additionally, using the update 
stage of the Kalman filter, the prediction of each object is 



Figure 5 Road plane detection: regions of the input image 

corrected with the new measurement obtained for it. Using 
this approach, vehicle detection and tracking is achieved, 
hence there is correlation between vehicles at different 
points in time. Therefore it is possible to know the 
trajectory (e.g. direction) of the vehicles, which is of high 
interest, for instance to analyse drivers behaviour. 

The proposed method for ground plane estimation 
followed by an object tracking strategy as described above 
has been tested for the traffic scenario with different 
driving conditions. The test sequences were acquired using 
a SONY HDR-HCR5E camera with a resolution of 
360 x 288 mounted on an on-board platform. A general 
purpose PC working at 2 GHz is employed for image 
processing, rendering an output frame rate of around 
10 fps. In order to statistically assess the performance of the 
method, the vehicle true positive, false positive and false 
negative detection rates have been evaluated for different 
test sequences with a total duration of 33 min. The true 
positive rate is defined as the number of correctly detected 
vehicles over the total number of detectable vehicles. The 
false negative rate is immediately derived from the previous 
parameter as the rate of non-detected vehicles. The false 
positive rate is defined as the number of false positives (i.e. 
regions that are classified as vehicles by the system and 
which are actually not vehicles) over the total number of 

correspond to the road region are overlaid with a grey mask 

detectable vehicles. A vehicle is considered detectable since it 
enters the ROI until it abandons the ROL In turn, the ROI 
comprises the own and the two adjacent lanes, and is limited 
to a maximum longitudinal distance d that depends on the 
camera calibration. In addition, if there is a vehicle (partially 
or totally) occluding others, only the occluding vehicle is 
considered as detectable. A vehicle is considered to be 
correctly detected when it is tracked by the system in at 
least 90% of its existence time within the ROI (a small 
number of losses is admitted owing to the intrinsic 
limitations of the bird's-eye view given by the IPM, that 
is, blind regions in the near area, and inaccuracies in the 
upper part due to non-perfect plane rectification). 

Test sequences involve a set of realistic scenarios, including 
different weather (cloudy/sunny) and traffic load (low/heavy 
traffic) conditions. Table 1 summarises the rates obtained 
for the different scenarios, as well as the absolute figures for 
each scenario, that is, number of true positives, number of 
false positives, and total number of vehicles. Using the 
relatively simple object detection strategy described above, 
we obtain a mean vehicle detection rate of 90.3% and a 
false positive rate of 8%, that demonstrates the potential of 
the proposed method. As expected, the system provides the 
best detection results, 97.5%, for cloudy sequences with low 
traffic density (in effect, under these conditions road 



Table 1 Detection results for different scenarios 

time 

no. of true positives 

no. of false positives 

no. total vehicles 

true positive rate (%) 

false positive rate (%) 

false negative rate (%) 

Type of scenario 

Cloudy/low traffic 

6'32" 

40 

3 

41 

97.5 

7.3 

2.5 

Cloudy/heavy traffic 

6'54" 

79 

6 

84 

94.0 

7.1 

6.0 

Sunny/low traffic 

10' 14" 

70 

6 

77 

90.9 

7.8 

9.1 

Sunny/heavy traffic 

10'04" 

82 

9 

98 

83.7 

9.2 

16.3 

Total 

33'44" 

271 

24 

300 

90.3 

8.0 

9.7 

features are less likely to be cluttered, and illumination is 
more homogeneous). False positive rates are near 8% 
regardless of the scenario, as they are mostly produced due 
to elements on the road side, such as guard rails. 

Some example results are shown in Fig. 6. The slight 
position error in the lower bound is due to the differential 
nature of the method (i.e. the difference starts at the 
predicted position of the vehicles rather than at their actual 
position). This slight error could be compensated by 
calculating the velocity of the vehicles. This can be inferred 

by first taking from the controller area network the velocity of 
the vehicle in which the camera is mounted, and then adding 
to it the relative velocity of the different target vehicles 
obtained from their tracking process. With the estimated 
absolute velocity of the vehicles, if camera calibration is 
available and frame rate is known, the space covered by the 
vehicles can be estimated and, via the camera calibration, the 
corresponding pixels in the image can be compensated. 

The strength of the method presented lies on the robustness 
of the defined homography prediction model. The rule to 

Figure 6 Examples of moving vehicle detection after road region detection 



classify the new observations and thus update the homography 
prediction depends on the norm of the difference between the 
new homography measurement and the predicted one. This 
rule ensures that those measurements that are compliant 
with the kinetic restrictions of the vehicles are accepted. 
Fig. 7 shows that the difference of the norm is indeed 
significant to detect erroneous measurements. In Fig. la the 
evolution of the norm of the instantaneous homography 
matrix in time is plotted for a test sequence. As can be 
observed, the norm of the homographies rejected by the 
designed rule (which are marked with black circles) is in 
general very different to that of the accepted ones. A detail of 
Fig. la around the accepted measurements is given in Fig. lb. 
As can be observed only two of the rejected homographies 
have a norm similar to that of the correct measurements. The 
norm of the predicted homography for every time point has 
also been displayed in the figure. Note that the prediction of 
the homography adapts smoothly to the new measurements. 

The difference between the instantaneous and the 
predicted homographies is plotted in Fig. 1c and, zoomed 
near the origin, in Fig. Id. The dashed line in Fig. Id 
depicts the threshold for homography acceptance. All the 
strong outliers in Fig. la are filtered in effect by the 

proposed rule (the black squares in Fig. 1c corresponding to 
rejected measurements are in the same time points as the 
black dots in Fig. la). These must have been generated due 
to wrong correspondences in the equation system derived 
from (2), since they are out of the range given by the kinetic 
restrictions associated to the moving platform. Remarkably, 
in the example, the norm of the matrix difference allows to 
identify two outliers that have a norm similar to that of the 
predicted homography, which are actually produced by 
wrong correspondences, and therefore rejected. 

Besides, one of the main advantages of the proposed 
method is that due to its predictive nature, the method 
is able to perform for long periods of time without new 
measurements. In fact, a prediction of the homography 
is available at every time point; hence, this prediction 
(instead of the erroneous or non-existing instantaneous 
measurement) can be used to achieve image alignment and 
eventually object detection. This can be observed in 
Figs, la and c, in which no new measurement of the 
homography exists for long stretches (e.g. frames 152-253, 
578-734). During these periods, the prediction is relied on 
until new measurements are provided, with no impact on 
the operation of the system. 
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Figure 7 Evolution of \\H'\\ and \\H' 

a Evolution of ||H'|| 
b Figure a zoomed near the origin 
c Evolution of \\H' — Hp\\ 
d Figure c zoomed near the origin 

Hp\\ for a test sequence 



5 Conclusions and future work 7 References 
In this paper, a method for estimating the ground plane in a 
dynamic scene captured by a non-stationary camera has been 
presented. The proposed approach computes the 
homography of the ground plane for two consecutive 
images to achieve image alignment. As opposed to other 
typical approaches, this method does not entail explicit 
computation of camera motion nor 3D ground plane 
parameter estimation. Alternatively, it is based solely on 
feature matching across successive images and a new 
homography calculation framework. 

The planar homography is assumed to be locally stable 
and change smoothly. Based on this assumption, the 
homography calculation has been modelled as a linear data 
estimation problem. The method is especially suited for 
traffic environments, in which the scarcity of feature 
points and the instability of the camera are bound to 
render imprecise or erroneous instantaneous measurements. 
With the proposed time-filtering method, although 
instantaneous homography measurements may be 
inaccurate, a robust estimate of the homography is attained 
at every time point. 

A reliable ground plane estimation is essential for the 
detection of objects moving on the ground plane. The 
potential of the method has been shown by complementing 
the method with an object detection strategy. This yields 
remarkable results even if a rather straightforward strategy 
is used, which proves the robustness and applicability of the 
proposed method for road region estimation. Future work 
will focus on the study of more sophisticated object 
tracking strategies, such as particles filters or extended 
Kalman filters (EKF). Owing to its non-linear nature, 
particle filter allows one to perform the analysis on the 
original image, where vehicles dynamics are non-linear 
because of perspective effect, thus avoiding the need for an 
IPM. In addition, it enables more complex observation 
models than Kalman filter. Alternatively, the use of a 
second-order EKF will also be explored for vehicle 
tracking in the transformed domain as an enhancement 
of the proposed Kalman filtering. Naturally, the use of 
sophisticated object tracking strategies, as those suggested 
above, upon the proposed method for ground plane region 
estimation is expected to provide more precise and 
complete results. 
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