285 research outputs found
Time-sensitive autonomous architectures
Autonomous and software-defined vehicles (ASDVs) feature highly complex systems, coupling safety-critical and non-critical components such as infotainment. These systems require the highest connectivity, both inside the vehicle and with the outside world. An effective solution for network communication lies in Time-Sensitive Networking (TSN) which enables high-bandwidth and low-latency communications in a mixed-criticality environment. In this work, we present Time-Sensitive Autonomous Architectures (TSAA) to enable TSN in ASDVs. The software architecture is based on a hypervisor providing strong isolation and virtual access to TSN for virtual machines (VMs). TSAA latest iteration includes an autonomous car controlled by two Xilinx accelerators and a multiport TSN switch. We discuss the engineering challenges and the performance evaluation of the project demonstrator. In addition, we propose a Proof-of-Concept design of virtualized TSN to enable multiple VMs executing on a single board taking advantage of the inherent guarantees offered by TSN
Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice
Neuropeptide S (NPS) and its receptor NPSR comprise a recently deorphaned G-protein-coupled receptor system. There is a body of evidence suggesting the involvement of NPS in wakefulness, anxiety, locomotor activity and oxidative stress damage. Considering that mood stabilizers block the stimulatory effect of psychostimulants in rodents, the present study aimed to investigate the effects of the pretreatment with lithium and valproate on the hyperlocomotion evoked by NPS. Another relevant action induced by lithium and valproate is the neuroprotection against oxidative stress. Thus, aiming to get further information about the mechanisms of action of NPS, herein we evaluated the effects of NPS, lithium and valproate, and the combination of them on oxidative stress damage. Behavioral studies revealed that the pretreatment with lithium (100 mg/kg, i.p.) and valproate (200 mg/kg, i.p.) prevented hyperlocomotion evoked by NPS 0.1 nmol. Importantly, the dose of valproate used in this study reduced mouse locomotion, although it did not reach the statistical significance. Biochemical analyses showed that lithium attenuated thiobarbituric reactive species (TBARS) formation in the striatum, cerebellum and hippocampus. NPS per se reduced TBARS levels only in the hippocampus. Valproate did not significantly affect TBARS levels in the brain. However, the combination of mood stabilizers and NPS blocked, instead of potentiate, the neuroprotective effects of each one. No relevant alterations were observed in carbonylated proteins after all treatments. Altogether, the present findings suggested that mainly the mood stabilizer lithium evoked antagonistic effects on the mediation of hyperlocomotion and protection against lipid peroxidation induced by NPS
Exploring multielement nanogranular coatings to forestall implant-related infections
Introduction: As we approach the post-antibiotic era, the development of innovative
antimicrobial strategies that carry out their activities through non-specific mechanisms
could limit the onset and spread of drug resistance. In this context, the use of
nanogranular coatings of multielement nanoparticles (NPs) conjugated to the surface
of implantable biomaterialsmight represent a strategy to reduce the systemicdrawbacks
by locally confining the NPs effects against either prokaryotic or eukaryotic cells.
Methods: In the present study, two new multielement nanogranular coatings
combining Ag and Cu with either Ti or Mg were synthesized by a gas phase physical
method and tested against pathogens isolated from periprosthetic joint infections to
address their potential antimicrobial value and toxicity in an in vitro experimental setting.
Results: Overall, Staphylococcus aureus, Staphylococcus epidermidis and
Escherichia coli displayed a significantly decreased adhesion when cultured on
Ti-Ag-Cu and Mg-Ag-Cu coatings compared to uncoated controls, regardless of
their antibiotic resistance traits. A dissimilar behavior was observed when
Pseudomonas aeruginosa was cultured for 30 and 120 minutes upon the surface
of Ti-Ag-Cu and Mg-Ag-Cu-coated discs. Biofilm formation was mainly reduced
by the active effect of Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a
milder effect on P. aeruginosa, probably due to its exceptional capability of
attachment and matrix production. These data were further confirmed by the
evaluation of bacterial colonization on nanoparticle-coated discs through
confocal microscopy. Finally, to exclude any cytotoxic effects on eukaryotic
cells, the biocompatibility of NPs-coated discs was studied. Results
demonstrated a viability of 95.8% and 89.4% of cells cultured in the presence of
Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls.
Conclusion: In conclusion, the present study demonstrated the promising antiadhesive
features of both Ti-Ag-Cu and Mg-Ag-Cu coatings, as well as their action
in hampering the biofilm formation, highlighting the safe use of the tested multielement
families of nanoparticles as new strategies against bacterial attachment to
the surface of biomedical implants
Hpv-specific systemic antibody responses and memory b cells are independently maintained up to 6 years and in a vaccine-specific manner following immunization with cervarix and gardasil in adolescent and young adult women in vaccination programs in Italy
Human papillomavirus (HPV) persistent infections are associated with cervical cancer and other HPV-related diseases and tumors. Thus, the characterization of long lasting immunity to currently available HPV vaccines is important. A total of 149 female subjects vaccinated with Cervarix or Gardasil participated to the study and they were stratified according to age (10–12-year-old and 16–20-year-old). Humoral immune responses (IgG and neutralizing antibody titers, antibody avidity) and circulating memory B cells were analyzed after an average of 4–6 years from the third immunization. The humoral responses against HPV-16 and HPV-18 (and HPV-6 and HPV- 11 for Gardasil) were high in both age groups and vaccines up to six years from the third dose. However, Cervarix induced significantly higher and more persistent antibody responses, while the two vaccines were rather equivalent in inducing memory B cells against HPV-16 and HPV-18. Moreover, the percentage of subjects with vaccine-specific memory B cells was even superior among Gardasil vaccinees and, conversely, Cervarix vaccinated individuals with circulating antibodies, but undetectable memory B cells were found. Finally, a higher proportion of Cervarix-vaccinated subjects displayed cross-neutralizing responses against non-vaccine types HPV-31 and HPV-45. Gardasil and Cervarix may, thus, differently affect long-lasting humoral immunity from both the quantitative and qualitative point of view
HIV-1 Tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity
Tat, the trans activation protein of HIV, is produced early upon infection to promote and expand HIV replication and transmission. However, Tat appears to also have effects on target cells, which may affect Ag recognition both during infection and after vaccination. In particular, Tat targets dendritic cells and induces their maturation and Ag-presenting functions, increasing Th1 T cell responses. We show in this work that Tat modifies the catalytic subunit composition of immunoproteasomes in B and T cells either expressing Tat or treated with exogenous biological active Tat protein. In particular, Tat up-regulates latent membrane protein 7 and multicatalytic endopeptidase complex like-1 subunits and down-modulates the latent membrane protein 2 subunit. These changes correlate with the increase of all three major proteolytic activities of the proteasome and result in a more efficient generation and presentation of subdominant MHC-I-binding CTL epitopes of heterologous Ags. Thus, Tat modifies the Ag processing and modulates the generation of CTL epitopes. This may have an impact on both the control of virally infected cells during HIV-1 infection and the use of Tat for vaccination strategies
Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces
Here we present a structural study of pentacene (Pn) thin films on vicinal
Ag(111) surfaces by He atom diffraction measurements and density functional
theory (DFT) calculations supplemented with van der Waals (vdW) interactions.
Our He atom diffraction results suggest initial adsorption at the step edges
evidenced by initial slow specular reflection intensity decay rate as a
function of Pn deposition time. In parallel with the experimental findings, our
DFT+vdW calculations predict the step edges as the most stable adsorption site
on the surface. An isolated molecule adsorbs as tilted on the step edge with a
binding energy of 1.4 eV. In addition, a complete monolayer (ML) with
pentacenes flat on the terraces and tilted only at the step edges is found to
be more stable than one with all lying flat or tilted molecules, which in turn
influences multilayers. Hence our results suggest that step edges can trap Pn
molecules and act as nucleation sites for the growth of ordered thin films with
a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl
Multiple HLA-All-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the EpsteinBarr virus-encoded nuclear antigen 4
Epstein-Barr virus (EBV), a ubiquitous herpesvirus, induces potent HLA class I-restricted cytotoxic T-lymphocyte (CTL) responses. Analyses of target antigen choice have shown that the very strong CTL responses which are often observed through the HLA All allele map are due almost entirely to a single transformation-associated EBV protein, the nuclear antigen EBNA4. Here, we sought to determine the number and relative immunogenicities of HLA All-restricted epitopes within this 938-amino-acid protein. An initial screening with a series of recombinant vaccinia virus vectors encoding progressively truncated forms of EBNA4 was followed by peptide sensitization experiments using overlapping 14-or 15-mers from the entire sequence. These two approaches allowed the identification of five epitope regions located between residues 101 and 115, 416 and 429, 396 and 410, 481 and 495, and 551 and 564 of the EBNA4 molecule. CTL preparations from all seven HLA All-positive donors tested had demonstrable reactivities against the 416-to-429 peptide, whereas reactivities against the other epitopes either tended to be lost on serial passage or, for some of the donors, were never detected. The immunodominance of the 416-to-429 epitope was further supported by peptide dilution assays using polyclonal effectors and by CTL cloning experiments. Analysis of the 416-to-429 region identified the nanomer 416-424 (IVTDFSVIK) as the cognate peptide. This peptide was able to sensitize targets to lysis by All-restricted CTL clones at concentrations as low as 5 x 10-14 M. Epstein-Barr virus (EBV) is a widespread lymphotropic herpesvirus which causes infectious mononucleosis and is strongly linked to at least three lymphoid malignancies: endemic Burkitt's lymphoma, immunoblastic B-cell lymphomas of immunosuppressed patients, and a subset of Hodgkin's lymphomas (7-9). Primary EBV infection of immunocompetent hosts is usually asymptomatic and leads to the establishment of a life-long carrier state, whereby the virus persists within the B-cell compartment of healthy carriers (5). These infected B lymphocytes can proliferate in vitro, giving rise to lymphoblastoid cell lines (LCLs) which express at least eight latency-associated viral antigens: the nuclear antigens EBNA1 to -6 and the membrane proteins LMP1 and -2 (reviewed in reference 13). The recent demonstration that the immunoblastic lymphomas occurring in immunosuppressed individuals represent the in vivo outgrowth of EBV-positive LCL-like cells (6) emphasizes the role of immune surveillance in controlling this potentially lymphomagenic virus. EBV induces long-lasting cytotoxic T-lymphocyte (CTL) memory in the infected host. Thus, EBV-specific CTL precursors can be reactivated in relatively large numbers from the T-cell pool of EBV-seropositive donors by challenging in vitro with autologous virus-infected B cell
Attenuation of lung inflammation and fibrosis in CD69-deficient mice after intratracheal bleomycin
<p>Abstract</p> <p>Background</p> <p>Cluster of differentiation 69 (CD69), an early activation marker antigen on T and B cells, is also expressed on activated macrophages and neutrophils, suggesting that CD69 may play a role in inflammatory diseases. To determine the effect of CD69 deficiency on bleomycin(BLM)-induced lung injury, we evaluated the inflammatory response following intratracheal BLM administration and the subsequent fibrotic changes in wild type (WT) and CD69-deficient (CD69<sup>-/-</sup>) mice.</p> <p>Methods</p> <p>The mice received a single dose of 3 mg/kg body weight of BLM and were sacrificed at 7 or 14 days post-instillation (dpi). Lung inflammation in the acute phase (7 dpi) was investigated by differential cell counts and cytokine array analyses of bronchoalveolar lavage fluid. In addition, lung fibrotic changes were evaluated at 14 dpi by histopathology and collagen assays. We also used reverse transcription polymerase chain reaction to measure the mRNA expression level of transforming growth factor β1 (TGF-β1) in the lungs of BLM-treated mice.</p> <p>Results</p> <p>CD69<sup>-/- </sup>mice exhibited less lung damage than WT mice, as shown by reductions in the following indices: (1) loss of body weight, (2) wet/dry ratio of lung, (3) cytokine levels in BALF, (4) histological evidence of lung injury, (5) lung collagen deposition, and (6) TGF-β1 mRNA expression in the lung.</p> <p>Conclusion</p> <p>The present study clearly demonstrates that CD69 plays an important role in the progression of lung injury induced by BLM.</p
Bovine colostrum: a source of bioactive compounds for prevention and treatment of gastrointestinal disorders.
Bovine colostrum is a rich source of nutrients and biologically active molecules known to be able to modulate the human immune system, such as lactoferrin, lysozyme, lactoperoxidase, immunoglobulins and growth factors. This comprehensive review aimed to gather evidence from animal experimentation and clinical trials that investigated the potential effects of bovine colostrum in preventing and treating diseases that affect the human gastrointestinal tract. Considered safe for human consumption, BC or its isolate components were used against a range of different gastrointestinal disorders. Beneficial effects were observed in several conditions: gastrointes-tinal infections, infectious diarrhoea, drug-induced lesions, gut-barrier malfunction, and inflammatory bowel disease. Under proper processing to maintain its components' integrity, BC products are valuable supplements with high nutraceutical value, capable of promoting and restoring gastrointestinal health
- …