3,033 research outputs found

    Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial)

    Get PDF
    Introduction: Several observational studies suggest that statins modulate the pathophysiology of sepsis and may prevent its progression. The aim of this study was to determine if the acute administration of atorvastatin reduces sepsis progression in statin naïve patients hospitalized with sepsis. Methods: A single centre phase II randomized double-blind placebo-controlled trial. Patients with sepsis were randomized to atorvastatin 40 mg daily or placebo for the duration of their hospital stay up to a maximum of 28-days. The primary end-point was the rate of sepsis progressing to severe sepsis during hospitalization. Results: 100 patients were randomized, 49 to the treatment with atorvastatin and 51 to placebo. Patients in the atorvastatin group had a significantly lower conversion rate to severe sepsis compared to placebo (4% vs. 24% p = 0.007.), with a number needed to treat of 5. No significant difference in length of hospital stay, critical care unit admissions, 28-day and 12-month readmissions or mortality was observed. Plasma cholesterol and albumin creatinine ratios were significantly lower at day 4 in the atorvastatin group (p < 0.0001 and p = 0.049 respectively). No difference in adverse events between the two groups was observed (p = 0.238). Conclusions: Acute administration of atorvastatin in patients with sepsis may prevent sepsis progression. Further multi-centre trials are required to verify these findings. Trial Registration: International Standard Randomized Control Trial Registry ISRCTN64637517

    The c(4×4)–a(1×3) surface reconstruction transition on InSb(001) : static versus dynamic conditions

    Get PDF
    The transition between the a(1 × 3) and c(4 × 4) surface reconstructions of InSb(0 0 1) has been carefully monitored by reflection high energy electron diffraction as a function of temperature and Sb2 flux, without incident In flux. Arrhenius-like behaviour is observed across the whole range of Sb2 fluxes and temperatures, allowing accurate internal calibration of substrate temperature. This behaviour is in contrast to aggregated data obtained under dynamic molecular beam epitaxy conditions, which show two regimes rather than a single Arrhenius-like phase boundary. The results are explained qualitatively by the atomistic kinetics in static versus dynamic conditions

    Factors influencing treatment selection and thirty-day mortality following chemotherapy for people with small cell lung cancer: an analysis of national audit data

    Get PDF
    Background Thirty-day mortality after treatment for lung cancer is a measure of unsuccessful outcome and where treatment should have been avoided. Guidelines recommend offering chemotherapy to individuals with small cell lung cancer (SCLC) who have poorer performance status (PS) because of its high initial response rate. However, this comes with an increased risk of toxicity and early death. We quantified real-world 30-day mortality in SCLC following chemotherapy, established the factors associated with this and compared these to the factors that influence receipt of chemotherapy. Methods We used linked national English datasets to define the factors associated with both receiving chemotherapy and 30-day mortality following chemotherapy. Results We identified 3,715 people diagnosed with SCLC, of which 2,235 (60.2%) received chemotherapy. There were 174 (7.8%) deaths within 30 days of chemotherapy. The adjusted odds of receiving chemotherapy decreased with older age, worsening PS and increasing comorbidities. Thirty-day mortality was independently associated with poor PS (PS 2 vs PS 0 adjusted OR 3.75 95% CI 1.71-8.25) and stage (extensive vs limited adjusted OR 1.68 95% CI 1.03-2.74) but in contrast was not associated with increasing age. Both chemotherapy administration and 30-day mortality varied by hospital network.Conclusions To reduce variation in chemotherapy administration predictors of 30-day mortality could be used as an adjunct to improve sub-optimal patient selection. We have quantified 30-day mortality risk by the two independently associated factors, PS and stage, so that patients and clinicians can make better informed decisions about the potential risk of early death following chemotherapy

    Qudit surface codes and gauge theory with finite cyclic groups

    Get PDF
    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level dd^\ell for dd prime and 0\ell \geq 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact ZdZ/dZ\mathbb{Z}_d\cong\mathbb{Z}/d\mathbb{Z} gauge theory whose excitations correspond to abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.Comment: 26 pages, 5 figure

    Geometric frustration and concerted migration in the superionic conductor barium hydride

    Get PDF
    Authors would like to thank the ISIS Facility Development Studentship for funding this work. Additionally, I would like to thank ISIS Neutron and Muon Source for providing the beam time to collect all the scattering data presented in this paper. Finally, I would like to thank the Crockett Scholarship for supporting my studies. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Accepted Author Manuscript version arising.Ionic conductivity is a phenomenon of great interest, not least because of its application in advanced electrochemical devices such as batteries and fuel cells. While lithium, sodium, and oxide fast ion conductors have been the subjects of much study, the advent of hydride (H–) ion fast conductors opens up new windows in the understanding of fast ion conduction due to the fundamental simplicity of the H– ion consisting of just two electrons and one proton. Here we probe the nature of fast ion conduction in the hydride ion conductor, barium hydride (BaH2). Unusually for a fast ion conductor, this material has a structure based upon a close-packed hexagonal lattice, with important analogues such as BaF2 and Li2S. We elucidate how the structure of the high temperature phase of BaH2 results in a disordered hydride sublattice. Furthermore, using novel combined quasi-elastic neutron scattering (QENS) and electrochemical impedance spectroscopy (EIS) we show how the high energy ions interact to create a concerted migration that results in macroscopic superionic conductivity via an interstitialcy mechanism.Publisher PDFPeer reviewe

    A system design for distributed energy generation in low temperature district heating (LTDH) networks

    Get PDF
    Project SCENIC (Smart Controlled Energy Networks Integrated in Communities) involves connecting properties at the University of Nottingham’s Creative Energy Homes test site in a community scale, integrated heat and power network. Controls will be developed to allow for the most effective heat load allocation and power distribution scenarios. Furthermore, the system will develop the prosumer concept, where consumers are both buyers and sellers of energy in both heat and power systems. This paper describes the initial phase of project SCENIC, achieving truly distributed generation within a heat network. The first of its kind, the system has a four pipe network configuration, consisting of a network flow loop to supply heat to homes, and a generation loop to collect energy from residential heating systems and supply it to a centralised thermal store. To achieve the design, IES-VE steady state heat load and dynamic building modelling have been used. A pre-insulated Rehau Rauthermex piping diameter was sized using flow rate calculations. Pipe diameter is reduced in line with distance from the central pump and associated pressure losses. The diameter ranges from 40 to 25mm, with a heat loss as low as 7.0 W/m. In addition, flow rates will fluctuate below a maximum of 1.99 l/s. Danfoss – 7 Series BS flatstations have been selected as the network-building heat interface units (HIU), to satisfy a calculated peak design heating loads of between 36.74 and 44.06 kW. Furthermore, to enable the prosumer concept and associated business models an adapted Danfoss Flatstations – 3 Series BS was selected to interface the distributed heat sources with the network. This paper gives details of the novel system configuration and concept, energy flows, as well as calculation and modelling results for the heat network. A premise is given to maintaining low temperatures in the network to ensure system efficiency in line with the latest research thinking

    Impact of Scottish vocational qualifications on residential child care : have they fulfilled the promise?

    Get PDF
    This article will present findings from a doctoral study exploring the impact of 'SVQ Care: Promoting Independence (level III)' within children's homes. The study focuses on the extent to which SVQs enhance practice and their function within a 'learning society'. A total of 30 staff were selected from seven children's homes in two different local authority social work departments in Scotland. Each member of staff was interviewed on four separate occasions over a period of 9 months. Interviews were structured using a combination of repertory grids and questions. Particular focus was given to the assessment process, the extent to which SVQs enhance practice and the learning experiences of staff. The findings suggest that there are considerable deficiencies both in terms of the SVQ format and the way in which children's homes are structured for the assessment of competence. Rather than address the history of failure within residential care, it appears that SVQs have enabled the status quo to be maintained whilst creating an 'illusion' of change within a learning society

    The conundrum of agenda-driven science in conservation

    Get PDF
    Conservation biology is a value-laden discipline predicated on conserving biodiversity (Soulé 1985), a mission that does not always sit easily with objective science (Lackey 2007; Pielke 2007; Scott et al. 2007). While some encourage scientists to be responsible advocates for conservation (Garrard et al. 2016), others worry that objectivity in conservation research may suffer (Lackey 2007). At this time, we believe advocacy by scientists is essential for environmental conservation and, indeed, humanity. It is difficult to envision the state of our environment had scientists failed to encourage policy makers and the public to address emerging conservation problems. Nevertheless, conservation scientists must avoid misusing the scientific process to promote specific conservation outcomes (Wilholt 2009); doing so erodes the credibility of science and can produce undesirable consequences (Thomas 1992; Mills 2000; Rohr and McCoy 2010). We consider intentionally engaging in activities outside of professional norms to promote desired outcomes, as part of either the production or dissemination of science, to constitute “agenda-driven science”. The issue of advocacy-related bias in conservation science merits renewed discussion because conservation conflicts in an increasingly polarized world might tempt some to engage in agenda-driven science to “win” a conflict

    Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor

    Full text link
    The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3_3S+^+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we combine a qubit reduction technique with variational and diagonalization quantum algorithms, and use a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. To the best of our knowledge, this is the first simulation of a photo-dissociation reaction on a superconducting quantum device, and an important step towards the computational description of photo-dissociation by quantum computing algorithms.Comment: 12 pages, 7 figure
    corecore