136 research outputs found

    Phylogeography and Genetic Diversity of Francisella tularensis subsp. holarctica in France (1947-2018)

    Get PDF
    In France, tularemia is caused by Francisella tularensis subsp. holarctica and is a sporadic disease affecting mainly wildlife animals and humans. F. tularensis species presents low genetic diversity that remains poorly described in France, as only a few genomes of isolates from the country are available so far. The objective of this study was to characterize the genetic diversity of F. tularensis in France and describe the phylogenetic distribution of isolates through whole-genome sequencing and molecular typing. Whole genomes of 350 strains of human or animal origin, collected from 1947 to 2018 in France and neighboring countries, were sequenced. A preliminary classification using the established canonical single nucleotide polymorphism (canSNP) nomenclature was performed. All isolates from France (except four) belonged to clade B.44, previously described in Western Europe. To increase the resolution power, a whole-genome SNP analysis was carried out. We were able to accurately reconstruct the population structure according to the global phylogenetic framework, and highlight numerous novel subclades. Whole-genome SNP analysis identified 87 new canSNPs specific to these subclades, among which 82 belonged to clade B.44. Identifying genomic features that are specific to sublineages is highly relevant in epidemiology and public health. We highlighted a large number of clusters among a single clade (B.44), which shows for the first time some genetic diversity among F. tularensis isolates from France, and the star phylogeny observed in clade B.44-subclades revealed that F. tularensis biodiversity in the country is relatively recent and resulted from clonal expansion of a single population. No association between clades and hosts or clinical forms of the disease was detected, but spatiotemporal clusters were identified for the first time in France. This is consistent with the hypothesis of persistence of F. tularensis strains found in Western Europe in the environment, associated with slow replication rates. Moreover, the presence of identical genotypes across long periods of time, and across long distances, supports this hypothesis but also suggests long-distance dispersal of the bacterium.This work was supported by the French National Research Agency (ANR) and the Direction Générale de l’Armement (DGA) (No. ANR-15-ASTR-0021-01). MK is a Ph.D. student co-supported by Université Paris-Est and DGA grants

    Spillover Events of Infection of Brown Hares (Lepus europaeus) with Rabbit Haemorrhagic Disease Type 2 Virus (RHDV2) Caused Sporadic Cases of an European Brown Hare Syndrome-Like Disease in Italy and Spain

    Get PDF
    Rabbit haemorrhagic disease virus (RHDV) is a lagovirus that can cause fatal hepatitis (rabbit haemorrhagic disease, RHD) with mortality of 80\u201390% in farmed and wild rabbits. Since 1986, RHDV has caused outbreaks in rabbits (Oryctolagus cuniculus) in Europe, but never in European brown hares (Lepus europaeus, EBH). In 2010, a new RHDV-related virus, called RHDV2, emerged in Europe, causing extended epidemics because it largely overcame the immunity to RHDV present in most rabbit populations. RHDV2 also was identified in Cape hare (Lepus capensis subsp. mediterraneus) and in Italian hare (Lepus corsicanus). Here, we describe two distinct incidents of RHDV2 infection in EBH that occurred in Italy (2012) and Spain (2014). The two RHDV2 strains caused macroscopic and microscopic lesions similar to European brown hare syndrome (EBHS) in hares, and they were genetically related to other RHDV2 strains in Europe. EBHs are common in Europe, often sharing habitat with rabbits. They likely have been exposed to high levels of RHDV2 during outbreaks in rabbits in recent years, yet only two incidents of RHDV2 in EBHs have been found in Italy and Spain, suggesting that EBHs are not a primary host. Instead, they may act as spillover hosts in situations when infection pressure is high and barriers between rabbits and hares are limited, resulting in occasional infections causing EBHS-like lesions. The serological survey of stocked hare sera taken from Italian and Spanish hare populations provided an understanding of naturally occurring RHDV2 infection in the field confirming its sporadic occurrence in EBH. Our findings increase the knowledge on distribution, host range and epidemiology of RHDV2

    Diseases and causes of death among alpacas in Sweden: a retrospective study

    Get PDF
    Background: Due to increasing popularity in Sweden during the last decade, alpacas are frequently encountered by practising veterinarians and pathologists. Knowledge regarding their health and diseases under Swedish conditions is, however, limited. Objectives: To improve knowledge about the health of alpacas in Sweden by collecting information on diseases and health status. Design: A retrospective study was made of 93 necropsies conducted on alpacas in Sweden during the period 2001–2013. Setting Data were obtained from the two major veterinary pathology centres in Sweden. The alpacas were hobby or farm animals and they were submitted by veterinarians in local practices or at a national animal healthcare organisation. Results: The digestive system was most frequently affected (29 per cent), with parasitic gastroenteritis (17 per cent) and hepatic disease being especially prevalent (15 per cent fascioliasis and 7 per cent hepatitis). Cardiovascular conditions (9 per cent), systemic diseases (7 per cent) and perinatal deaths were also common, including abortions (10 per cent) and fatal septicaemia (4 per cent). Wasting/emaciation was a frequent finding (26 per cent). Other diagnoses included dermatitis (8 per cent), diseases of the central nervous system (8 per cent), traumatic injuries (7 per cent), neoplasia (5 per cent), pneumonia (5 per cent) and nephritis (3 per cent). Conclusions: This study identified areas of concern regarding diagnostic and pathological procedures, for which specific measures have been recommended. One particular cause for concern was the number of deaths from emaciation in weanling alpacas during late winter or early spring. For adult alpacas, infectious and noninfectious causes of death were approximately equally frequent. Many of the diseases were considered clinically acute but pathology often showed them to be chronic conditions that had eventually deteriorated and presented as acute cases in the late stages. This study revealed similarities in the health/disease status reported in other European countries and in North America. The results can be used by alpaca keepers and veterinary practitioners to improve management, diagnosis and treatment of alpacas

    Heterogeneity of pathological prion protein accumulation in the brain of moose (<i>Alces alces</i>) from Norway, Sweden and Finland with chronic wasting disease

    Get PDF
    Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD

    Molecular Typing of Protease-Resistant Prion Protein in Transmissible Spongiform Encephalopathies of Small Ruminants, France, 2002–2009

    Get PDF
    The agent that causes bovine spongiform encephalopathy (BSE) may be infecting small ruminants, which could have serious implications for human health. To distinguish BSE from scrapie and to examine the molecular characteristics of the protease-resistant prion protein (PrPres), we used a specifically designed Western blot method to test isolates from 648 sheep and 53 goats. During 2002–2009, classical non-Nor98 transmissible spongiform encephalopathy had been confirmed among ≈1.7 million small ruminants in France. Five sheep and 2 goats that showed a PrPres pattern consistent with BSE, or with the CH1641 experimental scrapie source, were identified. Later, bioassays confirmed infection by the BSE agent in 1 of the 2 goats. Western blot testing of the 6 other isolates showed an additional C-terminally cleaved PrPres product, with an unglycosylated band at ≈14 kDa, similar to that found in the CH1641 experimental scrapie isolate and different from the BSE isolate

    Diagnosis of Tuberculosis in the Wild Boar (Sus scrofa): A Comparison of Methods Applicable to Hunter-Harvested Animals

    Get PDF
    To obtain robust epidemiological information regarding tuberculosis (TB) in wildlife species, appropriate diagnostic methods need to be used. Wild boar (Sus scrofa) recently emerged as a major maintenance host for TB in some European countries. Nevertheless, no data is available to evaluate TB post-mortem diagnostic methods in hunter-harvested wild boar. METHODOLOGY/PRINCIPAL FINDINGS: Six different diagnostic methods for TB were evaluated in parallel in 167 hunter-harvested wild boar. Compared to bacteriological culture, estimates of sensitivity of histopathology was 77.8%, gross pathology 72.2%, PCR for the MPB70 gene 66.7%, detection of acid-fast bacilli (AFB) in tissue contact smears 55.6% and in histopathology slides 16.7% (estimated specificity was 96.7%, 100%, 100%, 94.4% and 100%, respectively). Combining gross pathology with stained smears in parallel increased estimated sensitivity to 94.4% (94.4% specificity). Four probable bacteriological culture false-negative animals were identified by Discriminant Function Analysis. Recalculating the parameters considering these animals as infected generated estimated values for sensitivity of bacteriology and histopathology of 81.8%, gross pathology 72.7%, PCR for the MPB70 gene 63.6%, detection of AFB in tissue contact smears 54.5% and in histopathology slides 13.6% (estimated specificity was 100% for gross pathology, PCR, bacteriology and detection of AFB in histopathology slides, 96.7% for histopathology and 94.4% for stained smears). CONCLUSIONS/SIGNIFICANCE: These results show that surveys for TB in wild boar based exclusively on gross pathology considerably underestimate prevalence, while combination of tests in parallel much improves sensitivity and negative predictive values. This finding should thus be considered when planning future surveys and game meat inspection schemes. Although bacteriological culture is the reference test for TB diagnosis, it can generate false-negative results and this should be considered when interpreting data.This study was funded by laboratory funds from Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism

    Get PDF
    The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. H-type and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature

    Head Start Immunity: Characterising the early protection of C strain vaccine against subsequent classical swine fever virus infection

    Get PDF
    Classical Swine Fever Virus (CSFV) is an ongoing threat to the pig industry due to its high transmission and mortality rates associated with infection. Live attenuated vaccines such as the CSFV C strain vaccine are capable of protecting against infection within 5 days of vaccination, but the molecular mechanisms through which this early protection is mediated have yet to be established. In this study, we compared the response of pigs vaccinated with the C strain to non-vaccinated pigs both challenged with a pathogenic strain of CSFV. Analysis of transcriptomic data from the tonsils of these animals during the early stages after vaccination and challenge reveals a set of regulated genes that appear throughout the analysis. Many of these are linked to the ISG15 antiviral pathway suggesting it plays a key role in the rapid and early protection conferred by C strain vaccination

    Transcriptional Analysis Implicates Endoplasmic Reticulum Stress in Bovine Spongiform Encephalopathy

    Get PDF
    Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER) and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR) in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity
    corecore