117 research outputs found

    Evaluation of iron oxide nanoparticle biocompatibility

    Get PDF
    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite Îł-Fe2O3 nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, Îł-Fe2O3 can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although Îł-Fe2O3 nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, Îł-Fe2O3 could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications

    PAKing up to the endothelium

    Get PDF
    Angiogenesis recapitulates the growth of blood vessels that progressively expand and remodel into a highly organized and stereotyped vascular network. During adulthood, endothelial cells that formed the vascular wall retain their plasticity and can be engaged in neo-vascularization in response to physiological stimuli, such as hypoxia, wound healing and tissue repair, ovarian cycle and pregnancy. In addition, numerous human diseases and pathological conditions are characterized by an excessive, uncontrolled and aberrant angiogenesis. The signalling pathways involving the small Rho GTPase, Rac and its downstream effector the p21-activated serine/threonine kinase (PAK) had recently emerged as pleiotropic modulators in these processes. Indeed, Rac and PAK were found to modulate endothelial cell biology, such as sprouting, migration, polarity, proliferation, lumen formation, and maturation. Elucidating the Rac/PAK molecular circuitry will provide essential information for the development of new therapeutic agents designed to normalize the blood vasculature in human diseases.Comment: Cell Signal (2009) epub ahead of prin

    Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells

    Get PDF
    International audienceRapidly growing and highly vascularized tumors, such as glioblastoma multiforme, contain heterogeneous areas within the tumor mass, some of which are inefficiently supplied with nutrients and oxygen. While the cell death rate is elevated in such zones, tumor cells are still suspected to grow and survive independently of extracellular growth factors. In line with this, glioblastoma stem-like cells (GSCs) are found closely associated with brain vasculature in situ, and as such are most likely in a protected microenvironment. However, the behavior of GSCs under deprived conditions has not been explored in detail. Using a panel of 14 patient-derived GSCs, we report that ex vivo mitogen deprivation impaired self-renewal capability, abolished constitutive activation of the mTor pathway, and impinged on GSC survival via the engagement of autophagic and apoptotic cascades. Moreover, pharmacological inhibition of the mTor pathway recapitulated the mitogen deprivation scenario. In contrast, blocking either apoptosis or autophagy, or culturing GSCs with endothelial-secreted factors partly restored mTor pathway activation and rescued GSC survival. Overall, our data suggest that GSCs are addicted to mTor, as their survival and self-renewal are profoundly dependent on this signaling axis. Thus, as mTor governs the fate of GSCs under both deprivation conditions and in the presence of endothelial factors, it could be a key target for therapeutic purposes

    Breaking the VE-cadherin bonds

    Get PDF
    Exchanges between the blood compartment and the surrounding tissues require a tight regulation by the endothelial barrier. Recent reports inferred that VE-cadherin, an endothelial specific cell-cell adhesion molecule, plays a pivotal role in the formation, maturation and remodeling of the vascular wall. Indeed, a growing number of permeability inducing factors (PIFs) was shown to elicit signaling mechanisms culminating in VE-cadherin destabilization and global alteration of the junctional architecture. Conversely, anti-PIFs protect from VE-cadherin disruption and enhance cell cohesion. These findings provide evidence on how endothelial cell-cell junctions impact the vascular network, and change our perception about normal and aberrant angiogenesis

    VE-cadherin and claudin-5: it takes two to tango

    Get PDF
    Endothelial barrier function requires the adhesive activity of VE-cadherin and claudin-5, which are key components of adherens and tight endothelial junctions, respectively. Emerging evidence suggests that VE-cadherin controls claudin-5 expression by preventing the nuclear accumulation of FoxO1 and -catenin, which repress the claudin-5 promoter. This indicates that a crosstalk mechanism operates between these junctional structures

    Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells

    Get PDF
    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines

    vGPCR, The Great Escape

    Get PDF
    Kaposi Sarcoma (KS), a connective tissue cancer that may affect the skin and internal organs, is associated with human herpes virus 8 (HHV-8) infection. Among the oncogenes encoded by HHV8, the viral G protein coupled receptor (vGPCR ORF74) was found instrumental for sarcomagenesis initiation and progression. Indeed, vGPCR displays permanent activation, and is sufficient to induce tumor development in mice. However, the molecular mechanisms controlling vGPCR expression and activation remain poorly understood. Here, we present recent data from our group highlighting the presence of an endocytosis motif (Y326GLF) in the vGPCR C-terminal domain that orchestrates the receptor cellular localization, as well as its signaling and paracrine actions. We further show that this YGLF motif controls TLR4 surface expression, and may thus assure immune surveillance. In conclusion, this work shed light on the importance of vGPCR cellular localization and trafficking for its pathogenicity
    • …
    corecore