31 research outputs found

    Image processing of cylinder wake generation

    Get PDF
    In the present study, image processing techniques are applied to the chronophotographic visualizations of a cylinder wake generation. The flow patterns obtained by means of tracer particles are digitalized and processed in order to characterize the flow. This characterization is carried out by determining the evolution of the geometric parameters governing the wake, together with the streamfunction, vorticity, and pressure distributions. The present study reaches the moment of shedding of the first pair of vortices

    Comparative analyses of ESA, NASA and JAXA signals of acceleration during the SODI IVIDIL experiment

    No full text
    10.1007/s12217-014-9376-yThe present work aims to complete the analysis of the vibrational impact generated by the Influence of VIbrations on DIffusion of Liquids, IVIDIL, experiment in a global way. To do so, we have analysed all the episodes which, along the active period between September 2009 and January 2010, accounts for simultaneous accelerometric signals coming from the Columbus (ESA) module, the Destiny (NASA) module and the Pressurized module of the Kibo complex, PM-Kibo, (JAXA) respectively. Signals have been downloaded thanks to the NASA Principal Investigator Microgravity Services, PIMS, website. Vibrational analysis involved the consideration of second and higher order statistical techniques. In addition, a comparative study of the RMS acceleration integrated over one-third octave frequency bands enabled to check if the ISS vibratory limit requirements are everywhere accomplished. In summary it can be concluded that, in the vibratory regime, the experiment in the Columbus module is isolated enough of the Destiny and PM-Kibo ones. In addition, concerning only the Columbus data, the study also concluded that the peculiar energy exchange detected between the nominal frequency of the movement and its third harmonic is due to nonlinearities probably originated by the shaker, the module of translational arrangement mounted on the SODI instrument. All these results introduce an interesting generic question: is it always correct to consider that the accelerometric data only coming from one module can offer to the Space Station customers a suitable global scenario of the ISS environment?, if not, what is the real extent of these data

    Detecting accelerometric nonlinearities in the international space station

    No full text
    The present work aims to study mechanical nonlinearities detected in the accelerometric records during a thermodiffusion experiment performed at the International Space Station, ISS. In that experiment the test cell was subjected to harmonic vibrations of different frequencies and amplitudes. Accelerometric data associated to the runs were downloaded from NASA PIMS website. Second order spectral analysis shows that the shaker modifies the normality of the data and introduces nonlinearities in the distribution of energy. High Order Spectral Analysis, HOSA, based on the bispectrum, bicoherence, trispectrum and tricoherence functions enabled us to study the kind of these nonlinearities. Additionally, a new method using the biphase and triphase histograms helps us to assess if quadratic and/or cubic phase coupling mechanisms are responsible for the anomalous nonlinear energy transfer detected. Finally, the RMS acceleration values are investigated to check if the vibratory limit requirements of the ISS are exceeded. This methodology is important not only in generic research of aerospace engineering but also in space sciences in order to help space researchers to characterize more globally their experiments. It is mentioned finally that HOSA techniques are not new, but never have been used in the analysis of accelerometric data coming from the ISS. © 2014 IAA.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Ba3Yb(BO3)3 single crystals. Growth and spectroscopic characterization

    Get PDF
    We obtained Ba3Yb(BO3)3 single crystals by the flux method with solutions of the BaB2O4Na2OYb2O3 system. The evolution of the cell parameters with temperature shows a slope change at temperatures near 873 K, which may indicate a phase transition that is not observed by changes appearing in the x-ray powder patterns or by differential thermal analysis (DTA). The evolution of the diffraction patterns with the temperature shows incongruent melting at temperatures higher than 1473 K. DTA indicates that there is incongruent melting and this process is irreversible. Ba3Yb(BO3)3 has a wide transparency window from 247 to 3900 nm. We recorded optical absorption and emission spectra at room and low temperature, and we determined the splitting of Yb3+ ions. We used the reciprocity method to calculate the maximum emission cross section of 0.28 10-20 cm2 at 966 nm. The calculated lifetime of Yb3+ in Ba3Yb(BO3)3 is trad = 2.62 ms, while the measured lifetime is t = 3.80 ms

    Comparative ISS accelerometric analyses

    No full text
    Two accelerometric records coming from the SAMSes es08 sensor in the Columbus module, the so-called Runs 14 and 33 in terms of the IVIDIL experiment, has been studied here using standard digital signal analysis techniques. The principal difference between both records is the vibrational state of the IVIDIL experiment, that is to say, during Run 14 the shaking motor of the experiment is active while that in Run 33 this motor is stopped. Identical procedures have been applied to a third record coming from the SAMSII 121f03 sensor located in the Destiny module during an IVIDIL quiescent period. All records have been downloaded from the corresponding public binary accelerometric files from the NASA Principal Investigator Microgravity Services, PIMS website and, in order to be properly compared, have the same number of data. Results detect clear differences in the accelerometric behavior, with or without shaking, despite the care of the designers to ensure the achievement of the ISS μg-vibrational requirements all along the experiments. © 2013 IAA.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    JALCOM-14961; No. of Pages 4

    No full text
    Abstract We observed ultraviolet and visible up-conversion signals with maximum intensity at 383 nm, 407 nm, 457 nm, 474 nm, 525 nm, 552 nm, 652 nm, 696 nm, 772 nm, 801 nm, 814 nm and 848 nm from the 4f states of erbium-doped KYb(WO 4 ) 2 single crystals after pumping at 981 nm (10 194 cm −1 ) at room temperature (RT) and low temperature (10 K). These emissions were generated after simultaneous excitation of erbium and ytterbium at 981 nm (Yb 3+ acts as a sensitizer of Er 3+ ). We discuss the up-conversion mechanism in which three and two photons were involved in the generation of the ultraviolet and visible emissions

    Comparative iss accelerometric analyses

    No full text
    Two accelerometric records coming from the SAMSes es08 sensor in the Columbus module, the so-called Runs 14 and 33 in terms of the IVIDIL experiment, has been studied here using standard digital signal analysis techniques. The principal difference between both records is the vibrational state of IVIDIL, that is to say, during Run 14 the shacking motor of the experiment is active while that in Run 33 this motor is stopped. Identical procedures have been applied to a third record coming from the SAMSII 121f03 sensor located in the Destiny module during an IVIDIL quiescent period. All records have been downloaded from the corresponding public binary accelerometric files from the NASA Principal Investigator Microgravity Services, PIMS website and, in order to be properly compared, have the same number of data. Results detect clear differences in the accelerometric behavior, with or without shaking, despite the care of the designers to ensure the achievement of the ISS pg-vibrational requirements all along the experiments. Copyright © (2012) by the International Astronautical Federation.SCOPUS: cp.pinfo:eu-repo/semantics/publishe
    corecore