788 research outputs found

    Effectiveness of a Rigid Grate for Excluding Pacific Halibut, Hippoglossus stenolepis, From Groundfish Trawl Catches

    Get PDF
    A rigid grate was installed in a groundfish trawl to test its effectiveness in excluding Pacific halibut, Hippoglossus stenolepis, from commercial flatfish catches in the Gulf of Alaska. The grate was located ahead of the trawl codend to direct halibut toward an escape opening while allowing target species to pass through toward the codend. In an experimental fishery, the escape rate of halibut was estimated at 94%, while 72% of the Dover sole, Microstomas pacificus, 67% of the rex sole, Glyptocephalus zachirus, and 79% of the flathead sole, Hippoglossoides elassodon, were retained

    Exploring a new technique for comparing bilinguals’ L1 and L2 reading speed

    Get PDF
    Is it possible to tell whether bilinguals are able to read simple text in their two languages equally fluently? Is it thus possible to distinguish balanced bilinguals from unbalanced bilinguals with respect to reading fluency in their first language (L1) and second language (L2)? In this study, we avoided making direct comparisons between L1 and L2 reading speeds, comparing, instead, the amount of inhibition caused by a nonlinguistic, external factor (degraded text visibility). In two tasks, 32 university students read 20 target sentences in L1 Dutch and L2 English, each sentence appearing both in normal and in poorly readable font. Degraded font affected reading times substantially, more so in L2 than in L1, as predicted. However, it was not found that participants with higher L2 proficiency were less affected by degraded font in L2 reading than participants with lower L2 proficiency

    Gain properties of dye-doped polymer thin films

    Full text link
    Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency KK, in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with various setups (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM doped PMMA layer, the different experimental approaches give a consistent value KK\simeq 80 cm.MW1^{-1}. On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Besides, temporal measurements at the picosecond scale were carried out to support the analysis.Comment: 15 pages, 17 figure

    On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Get PDF
    In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate 5 projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (Qu´ebec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate 10 models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface 15 variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in 25 hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary in hydro-climatic projections, or safe to use as it does not alter the change signal of river runoff. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the 5 past regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future period is weak for most indicators with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations

    Mesure de l'énergie des ions lourds par la méthode des protons projetés

    No full text
    Un dispositif destiné à la mesure de l'énergie des faisceaux d'ions lourds de 3 à 6 MeV/ uma a été construit. Le principe de la méthode est de mesurer l'énergie des protons projetés à zéro degré par collision élastique des ions incidents avec les noyaux d'hydrogène d'une cible de formvar. L'incertitude calculée sur l'énergie ainsi mesurée pour les ions lourds est de + 0,45 %. Des mesures faites sur des faisceaux de 19F et 40Ca d'énergie bien connue, accélérés par un Tandem MP, ont montré un écart maximum de 0,3 % entre les énergies réelles et mesurées. Le dispositif permet de contrôler ou calibrer des méthodes plus lourdes de détermination de l'énergie des ions lourds : déviation magnétique, temps de vol. Il se prête particulièrement bien à la mesure des pertes d'énergie d'ions lourds dans des ralentisseurs solides

    Spin Hall conductivity in the Kane-Mele-Hubbard model at finite temperature

    Full text link
    The Kane-Mele model is known to show a quantized spin Hall conductivity at zero temperature. Including Hubbard interactions at each site leads to a quantum phase transition to an XY antiferromagnet at sufficiently high interaction strength. Here, we use the two-particle self-consistent approach (TPSC), which we extend to include spin-orbit coupling, to investigate the Kane-Mele-Hubbard model at finite temperature and half-filling. TPSC is a weak to intermediate coupling approach capable of calculating a frequency- and momentum-dependent self-energy from spin and charge fluctuations. We present results for the spin Hall conductivity and correlation lengths for antiferromagnetic spin fluctuations for different values of temperature, spin-orbit coupling and Hubbard interaction. The vertex corrections, which here are analogues of Maki-Thompson contributions, show a strong momentum dependence and give a large contribution in the vicinity of the phase transition at all temperatures. Their inclusion is necessary to observe the quantization of the spin Hall conductivity for the interacting system in the zero temperature limit. At finite temperature, increasing the Hubbard interaction leads to a decrease of the spin Hall conductivity. This decrease can be explained by band-gap renormalization from scattering of electrons on antiferromagnetic spin fluctuations.Comment: 11 pages, 8 figure
    corecore