5,323 research outputs found

    Coefficients and terms of the liquid drop model and mass formula

    Get PDF
    The coefficients of different combinations of terms of the liquid drop model have been determined by a least square fitting procedure to the experimental atomic masses. The nuclear masses can also be reproduced using a Coulomb radius taking into account the increase of the ratio R_0/A1/3R\_0/A^{1/3} with increasing mass, the fitted surface energy coefficient remaining around 18 MeV

    Spatial variation of the thermal structure of Jupiter's atmosphere

    Get PDF
    The radiative seasonal model described by Bezard and Gautier for the case of Saturn was adapted to Jupiter. That the atmosphere is radiatively controlled above the 500 mb pressure level and that the temperature at the radiative-convective boundary level is constant for all latitudes is assumed. An internal heat source and absorption by methane and aerosols contribute to atmospheric heating. Absorption by aerosols was adjusted to give a planetary Bond albedo equal to 0.343. Despite Jupiter's low obliquity, the model predicts seasonal variations of temperature of several degrees for the 1 mb pressure level at mid-latitude regions

    Low temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers

    Full text link
    We report on a detailed analysis of the superconducting properties of boron-doped silicon films grown along the 001 direction by Gas Immersion Laser Doping. The doping concentration cB has been varied up to approx. 10 at.% by increasing the number of laser shots to 500. No superconductivity could be observed down to 40mK for doping level below 2.5 at.%. The critical temperature Tc then increased steeply to reach 0.6K for cB = 8 at%. No hysteresis was found for the transitions in magnetic field, which is characteristic of a type II superconductor. The corresponding upper critical field Hc2(0) was on the order of 1000 G, much smaller than the value previously reported by Bustarret et al. in Nature (London) 444, 465 (2006).Comment: 4 pages including 4 figures, submitted to PRB-Rapid Communicatio

    Status of Superconducting RF Linac Development for APT

    Get PDF
    This paper describes the development progress of high current superconducting RF linacs in Los Alamos, performed to support a design of the linac for the APT (Accelerator Production of Tritium) Project. The APT linac design includes a CW superconducting RF high energy section, spanning an energy range of 211 to 1030 MeV, and operating at a frequency of 700 MHz with two constant beta sections (beta of 0.64 and 0.82). In the last two years, we have progressed towards build a cryomodule with beta of 0.64. We completed the designs of the 5 cell superconducting cavities and the 210 kW power couplers. We are scheduled to begin assembly of the cryomodule in September 2000. In this paper, we present an overview of the status of our development efforts and a report on the results of the cavity and coupler test program.Comment: LINAC2000 THD1

    Adaptive Optics Images of Kepler Objects of Interest

    Get PDF
    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.Comment: 9 pages, 4 figures, accepted to A
    corecore