857 research outputs found

    Impacts of free-floating objects: Unique space station experiments

    Get PDF
    The transfer of momentum and kinetic energy between planetary bodies forms the basis for wide ranging problems in planetary science ranging from the collective long term effects of minor perturbations to the catastrophic singular effect of a major collision. Although the collisional transfer of momentum and energy was discussed over the last two decades, major issues remain that largely reflect current limitations in Earth based experimental conditions and 3-D numerical codes. Two examples with potential applications in a Space Station laboratory, are presented: asteroid spin rates and orientations, and planetary disruption/spin rates. Asteroid spin rate and orientation experiments are needed wherein free floating nonspining and spining objects of varying strength, porosity, and volatility are impacted at varying velocities and angles. A space station platform also could provide an opportunity to test important facets of planetary disruption/spin rate models by allowing freely suspended spherical targets of varying viscosities, internal density gradients, and spin rates

    Seismic effects from major basin formation on the Moon and Mercury

    Get PDF
    Grooved and hilly terrains are reported which occur at the antipode of major basins on the Moon (Imbrium, Orientale) and Mercury (Caloris). Order-of-magnitude calculations, for an Imbrium-size impact on the Moon, indicate P-wave-induced surface displacements of 10 m at the basin antipode that would arrive prior to secondary ejecta. Comparable surface waves are reported which would arrive subsequent to secondary ejecta impacts and would increase in magnitude as they converge at the antipode. Other seismically induced surface features include: subdued, furrowed crater walls produced by landslides and concomitant secondary impacts; emplacement and leveling of light plains units owing to seismically induced "fluidization" of slide material; knobby, pitted terrain around old basins from enhancement of seismic waves in ancient ejecta blankets; and the production and enhancement of deep-seated fractures that led to the concentration of farside lunar maria in the Apollo-Ingenii region

    Impact decapitation from laboratory to basin scales

    Get PDF
    Although vertical hypervelocity impacts result in the annihilation (melting/vaporization) of the projectile, oblique impacts (less than 15 deg) fundamentally change the partitioning of energy with fragments as large as 10 percent of the original projectile surviving. Laboratory experiments reveal that both ductile and brittle projectiles produce very similar results where limiting disruption depends on stresses proportional to the vertical velocity component. Failure of the projectile at laboratory impact velocities (6 km/s) is largely controlled by stresses established before the projectile has penetrated a significant distance into the target. The planetary surface record exhibits numerous examples of oblique impacts with evidence fir projectile failure and downrange sibling collisions

    Debris-cloud collisions: Accretion studies in the Space Station

    Get PDF
    The growth of planetesimals in the Solar System reflects the success of collisional aggregation over disruption. It is widely assumed that aggregation must represent relatively low encounter velocities between two particles in order to avoid both disruption and high-ejecta velocities. Such an assumption is supported by impact experiments and theory. Experiments involving particle-particle impacts, however, may be pertinent to only one type of collisional process in the early Solar System. Most models envision a complex protoplanetary nebular setting involving gas and dust. Consequently, collisions between clouds of dust or solids and dust may be a more relistic picture of protoplanetary accretion. Recent experiments performed at the NASA-Ames Vertical Gun Range have produced debris clouds impacting particulate targets with velocities ranging from 100 m/s to 6 km/s. The experiments produced several intriguing results that not only warrant further study but also may encourage experiments with the impact conditions permitted in a microgravity environment. Possible Space Station experiments are briefly discussed

    Impacts of free-floating objects: Unique Space Station experiments

    Get PDF
    The transfer of momentum and kinetic energy between planetary bodies forms the basis for wide-ranging problems in planetary science ranging from the collective long-term effects of minor perturbations to the catastrophic singular effect of a major collision. In the former case, the evolution of asteroid spin rates and orientations and planetary rotation rates are cited. In the latter case, the catastrophic angular momenta and the near-global disruption of partially molten planets are included. Although the collisional transfer of momentum and energy were discussed over the last two decades, major issues remain that largely reflect current limitations in earth-based experimental conditions and 3-D numerical codes. Two examples with potential applications in a Space Station laboratory are presented

    Impacts of hemispherical granular targets: Implications for global impacts

    Get PDF
    As impact excavation diameters subtend a nontrivial fraction of a planetary body, both the excavation process and ejecta emplacement may depart form the classical description of impacts into a planar surface. Hemispherical particulate targets were impacted at the NASA-Ames Vertical Gun Range in order to trace the evolution of the ejecta curtain and to document the effects of slope and surface curvature on crater shape and cratering efficiency. The experiments suggest that basin size impacts or large craters on small bodies may be shallower than their counterparts on a planar surface but may have displaced a larger relative mass. Moreover, the increased ejecta curtain angle with distance may result in a change in ejecta emplacement style with distance. Although the ejecta curtain is vertical, ejecta within the curtain impact the surface at 45 deg and the time between first and last arrival within the curtain increases. This increased interaction time as the ejecta curtain density decreases should result in a more chaotic style of implacement

    Spray Ejected from the Lunar Surface by Meteoroid Impact

    Get PDF
    Fragments ejected from lunar surface by meteoroid impact analyzed on basis of studies of hypervelocity impact in rock and san

    Lunar rocks as meteoroid detectors

    Get PDF
    About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles. The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. The population of craters on such a surface is directly related to the total population of particles impacting that surface. Crater size distribution data together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of interplanetary dust at 1 AU

    A feasibility study for a remote laser water turbidity meter

    Get PDF
    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha

    The micrometeoroid complex and evolution of the lunar regolith

    Get PDF
    The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids
    • …
    corecore