1,416 research outputs found

    Seismic effects from major basin formation on the Moon and Mercury

    Get PDF
    Grooved and hilly terrains are reported which occur at the antipode of major basins on the Moon (Imbrium, Orientale) and Mercury (Caloris). Order-of-magnitude calculations, for an Imbrium-size impact on the Moon, indicate P-wave-induced surface displacements of 10 m at the basin antipode that would arrive prior to secondary ejecta. Comparable surface waves are reported which would arrive subsequent to secondary ejecta impacts and would increase in magnitude as they converge at the antipode. Other seismically induced surface features include: subdued, furrowed crater walls produced by landslides and concomitant secondary impacts; emplacement and leveling of light plains units owing to seismically induced "fluidization" of slide material; knobby, pitted terrain around old basins from enhancement of seismic waves in ancient ejecta blankets; and the production and enhancement of deep-seated fractures that led to the concentration of farside lunar maria in the Apollo-Ingenii region

    Debris-cloud collisions: Accretion studies in the Space Station

    Get PDF
    The growth of planetesimals in the Solar System reflects the success of collisional aggregation over disruption. It is widely assumed that aggregation must represent relatively low encounter velocities between two particles in order to avoid both disruption and high-ejecta velocities. Such an assumption is supported by impact experiments and theory. Experiments involving particle-particle impacts, however, may be pertinent to only one type of collisional process in the early Solar System. Most models envision a complex protoplanetary nebular setting involving gas and dust. Consequently, collisions between clouds of dust or solids and dust may be a more relistic picture of protoplanetary accretion. Recent experiments performed at the NASA-Ames Vertical Gun Range have produced debris clouds impacting particulate targets with velocities ranging from 100 m/s to 6 km/s. The experiments produced several intriguing results that not only warrant further study but also may encourage experiments with the impact conditions permitted in a microgravity environment. Possible Space Station experiments are briefly discussed

    Impacts of free-floating objects: Unique Space Station experiments

    Get PDF
    The transfer of momentum and kinetic energy between planetary bodies forms the basis for wide-ranging problems in planetary science ranging from the collective long-term effects of minor perturbations to the catastrophic singular effect of a major collision. In the former case, the evolution of asteroid spin rates and orientations and planetary rotation rates are cited. In the latter case, the catastrophic angular momenta and the near-global disruption of partially molten planets are included. Although the collisional transfer of momentum and energy were discussed over the last two decades, major issues remain that largely reflect current limitations in earth-based experimental conditions and 3-D numerical codes. Two examples with potential applications in a Space Station laboratory are presented

    Lunar rocks as meteoroid detectors

    Get PDF
    About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles. The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. The population of craters on such a surface is directly related to the total population of particles impacting that surface. Crater size distribution data together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of interplanetary dust at 1 AU

    Spray Ejected from the Lunar Surface by Meteoroid Impact

    Get PDF
    Fragments ejected from lunar surface by meteoroid impact analyzed on basis of studies of hypervelocity impact in rock and san

    Verifying timestamps of occultation observation systems

    Full text link
    We describe an image timestamp verification system to determine the exposure timing characteristics and continuity of images made by an imaging camera and recorder, with reference to Coordinated Universal Time (UTC). The original use was to verify the timestamps of stellar occultation recording systems, but the system is applicable to lunar flashes, planetary transits, sprite recording, or any area where reliable timestamps are required. The system offers good temporal resolution (down to 2 msec, referred to UTC) and provides exposure duration and interframe dead time information. The system uses inexpensive, off-the- shelf components, requires minimal assembly and requires no high-voltage components or connections. We also describe an application to load FITS (and other format) image files, which can decode the verification image timestamp. Source code, wiring diagrams and built applications are provided to aid the construction and use of the device.Comment: 10 pages, 7 figures, accepted to Publications of the Astronomical Society of Australia (PASA

    A feasibility study for a remote laser water turbidity meter

    Get PDF
    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha

    Consequences of asteroid fragmentation during impact hazard mitigation

    Get PDF
    The consequences of the fragmentation of an Earth-threatening asteroid due to an attempted deflection are examined in this paper. The minimum required energy for a successful impulsive deflection of a threatening object is computed and compared to the energy required to break up a small size asteroid. The results show that the fragmentation of an asteroid that underwent an impulsive deflection, such as a kinetic impact or a nuclear explosion, is a very plausible event.Astatistical model is used to approximate the number and size of the fragments as well as the distribution of velocities at the instant after the deflection attempt takes place. This distribution of velocities is a function of the energy provided by the deflection attempt, whereas the number and size of the asteroidal fragments is a function of the size of the largest fragment. The model also takes into account the gravity forces that could lead to a reaggregation of the asteroid after fragmentation. The probability distribution of the pieces after the deflection is then propagated forward in time until the encounter with Earth. A probability damage factor (i.e., expected damage caused by a given size fragment multiplied by its impact probability) is then computed and analyzed for different plausible scenarios, characterized by different levels of deflection energies and lead times
    • …
    corecore