33 research outputs found

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British–German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO–KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network

    Constraints on the Cosmic Expansion History from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event\u27s potential hosts. Assuming a fixed BBH population, we estimate a value of with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run. In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive subband, starting at 256.06 Hz, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=6.16×10−26, assuming the orbital inclination angle takes its electromagnetically restricted value ι=44°. The upper limits on gravitational wave strain reported here are on average a factor of ∼3 lower than in the second observing run HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain subbands, assuming ι=44°

    Surgical treatment of patients with symptomatic Kimmerle's anomaly using video endoscopy

    Get PDF
    Background: Clinical manifestations of Kimmerle’s anomaly are detected in 5.5 to 20% of patients. The main reason for the development of symptoms is prolonged compression of the V3 (atlantic) segment of the vertebral artery in the bone ring as a result of the atlantooccipital membrane’s exostosis. To date, the final tactics for treating patients with Kimmerle’s anomaly has not been determined. The effectiveness of conservative methods of therapy does not exceed 40%. The aim Of this study was to evaluate the results of a minimally invasive surgical treatment of patients with symptomatic Kimmerle’s anomaly using video endoscopic assistance. Methods: In the period from 2020 to 2022, 15 patients were operated on. The indication for the surgical treatment was the lack of the conservative therapy’s effect for 1 year from the onset of the disease, aggravation of the disease symptoms, a decrease in the blood flow through the vertebral artery at the Kimmerle’s anomaly side when turning the head. The vertebral artery decompression was performed using video endoscopy through a posterior median approach in two (13%) patients and through a paravertebral intermuscular approach (4 cm incision in the occipitocervical region in the projection of the Kimmerle’s anomaly) in thirteen (87%) patients. Results: The outcome of the disease was assessed at the time of discharge from the hospital, as well as in 6 and in 12 months after the operation. Following the surgical treatment, all the patients showed the complete regression of symptoms and restoration of the blood flow velocities in the vertebral artery. There were no complications after the operation. The use of video endoscopy made it possible to reduce the size of the surgical wound from 12 cm to 4 cm, which contributed to a decrease in the intensity of pain in the postoperative period, early activation and a decrease in the duration of the inpatient treatment. Conclusion: With the proper selection of patients with Kimmerle’s anomaly, decompression of the V3 segment of the VA using video endoscopy is a safe and effective method of treatment

    Long-term results of microvascular decompression with video endoscopy in the treatment of patients with atypical trigeminal neuralgia

    Get PDF
    Background: The incidence of atypical trigeminal neuralgia (aNTN) varies from 1 to 7 per 100,000 population per year. The main cause of its development is compression of the trigeminal nerve (TN) root by a vein and/or artery in the cerebellar cistern. To date, the final tactics of treatment for patients with aNTN has not been specified. The effectiveness of conservative methods of therapy does not exceed 50%. The aim of this study was to evaluate the results of microvascular decompression using video endoscopy in the treatment of patients with atypical trigeminal neuralgia. Methods: In the period from 2014 to 2021, 34 patients with aNTN were operated on, of which 18 (53%) patients had neuropathic pain (more than 4 points on the DN4 scale), and 15 (44%) patients had transformation of classical trigeminal neuralgia into atypical neuralgia. The conservative therapy (carbamazepine, gabapentin, pregabalin), administered to all the patients in the preoperative period, was not accompanied by a significant relief of pain syndrome. The maximum intensity of pain upon admission to the hospital was, according to the visual analog scale (VAS), 10 points, according to the BNI (Barrow Neurological Institute) Pain Intensity Scale V (severe, persistent pain). All the patients underwent microvascular decompression of the trigeminal nerve root with the use of Teflon; in 12 (35%) patients, in addition to microscopy, video endoscopy was used. The average follow-up period after the surgery was 3.41.7 years (from 1 to 5 years). Results: In all (100%) patients, the pain was completely eliminated (BNI I) after the surgery. A total five-year excellent and good outcome of the disease on the J. Miller and BNI scale (I -II) was noted in 80% (n=27) of patients with aNTN. The risk of pain recurrence after microvascular decompression was 14% (n=3) in the first three years, and 34% (n=4) after 5 years. The use of video endoscopy made it possible to identify the blood vessels compressing the root of the trigeminal nerve with a minimal displacement of the cerebellum and cranial nerves when visualizing the neurovascular conflict. Conclusion: The microvascular decompression method with video endoscopy is effective in the treatment of patients with aNTN

    Safety and efficacy of convalescent plasma for COVID-19: the preliminary results of a clinical trial

    Get PDF
    Background. The lack of effective etiotropic therapy for COVID-19 has prompted researchers around the globe to seekr various methods of SARS-CoV-2 elimination, including the use of convalescent plasma. Aim. The aim of this work was to study the safety and efficacy of the convalescence plasma treatment of severe COVID-19 using the plasma containing specific antibodies to the receptor binding domain (RBD) of SARS-CoV-2 S protein in a titer of at least 1:1000. Methods. A single-center, randomized, prospective clinical study was performed at the FRCC FMBA of Russia with the participation of 86 patients who were stratified in two groups. The first group included 20 critically ill patients who were on mechanical ventilation the second group included 66 patients with moderate to severe COVID-19 and with spontaneous respiration. The patients in the second group were randomized into two cohorts in a ratio of 2:1. In the first cohort (46 patients), pathogen-reduced convalescent plasma was transfused (twice, 320 ml each), in the second cohort (20 patients) a similar amount of non-immune freshly frozen plasma was transfused to the patients. Results. The use of plasma of convalescents in patients with severe COVID-19 being on mechanical ventilation does not affect the disease outcome in these patients. The mortality rate in this group was 60%, which corresponds to the average mortality of COVID patients on mechanical ventilation in our hospital. In the second group, clinical improvement was detected in 75% and 51%, for convalescent and non-immune plasma, respectively. Of the 46 people who received convalescent plasma, three patients (6.5%) were transferred to mechanical ventilation, two of them died. In the group receiving non-immune plasma, the need for mechanical ventilation also arose in three patients (15%), of which two died. The hospital mortality in the group of convalescent plasma was 4.3%, which is significantly lower than the average COVID-19 hospital mortality at our Center (6.73%) and more than two times lower than the hospital mortality in the control group (n=150), matched by age and by the disease severity. Conclusions. Thus, we demonstrated a relative safety of convalescent plasma transfusion and the effectiveness of such therapy for COVID-19 at least in terms of the survival of hospitalized patients with severe respiratory failure without mechanical ventilation. In the absence of bioengineered neutralizing antibodies and effective etiotropic therapy, the use of hyperimmune convalescent plasma is the simplest and most effective method of specific etiopathogenetic therapy of severe forms of COVID-19

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care

    A MORPHOLOGICAL STUDY OF SOLVOTHERMALLY GROWN SNO2 NANOSTRUCTURES FOR APPLICATION IN PEROVSKITE SOLAR CELLS

    No full text
    Tin(IV) oxide (SnO2) nanostructures, which possess larger surface areas for transporting electron carriers, have been used as an electron transport layer (ETL) in perovskite solar cells (PSCs). However, the reported power conversion efficiencies (PCEs) of this type of PSCs show a large variation. One of the possible reasons for this phenomenon is the low reproducibility of SnO2 nanostructures if they are prepared by different research groups using various growth methods. This work focuses on the morphological study of SnO2 nanostructures grown by a solvothermal method. The growth parameters including growth pressure, substrate orientation, DI water-to-ethanol ratios, types of seed layer, amount of acetic acid, and growth time have been systematically varied. The SnO2 nanomorphology exhibits a different degree of sensitivity and trends towards each growth factor. A surface treatment is also required for solvothermally grown SnO2 nanomaterials for improving photovoltaic performance of PSCs. The obtained results in this work provide the research community with an insight into the general trend of morphological changes in SnO2 nanostructures influenced by different solvothermal growth parameters. This information can guide the researchers to prepare more reproducible solvothermally grown SnO2 nanomaterials for future application in devices
    corecore