8 research outputs found

    Equation of State and Opacities for Warm Dense Matter.

    Get PDF
    We will present recent developments in the calculation of opacity and equation of state tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code BiG BART to compute opacities in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the improved RADIOM model [3], which makes use of existing LTE data tables. We use the screened-hydrogenic model [4] to derive the Equation of State using the population and energy of the levels avaliable from the atomic dat

    Radiative properties for warm and hot dense matter

    Full text link
    We will present calculations of opacities for matter under LTE conditions. Opacities are needed in radiation transport codes to study processes like Inertial Confinement Fusion and plasma amplifiers in X-ray secondary sources. For the calculations we use the code BiGBART, with either a hydrogenic approximation with j-splitting or self-consistent data generated with the atomic physics code FAC. We calculate the atomic structure, oscillator strengths, radiative transition energies, including UTA computations, and photoionization cross-sections. A DCA model determines the configurations considered in the computation of the opacities. The opacities obtained with these two models are compared with experimental measurements

    Frequency-dependent opacity calculations for radiation transport simulations

    Get PDF
    We will present recent developments in the calculation of opacity tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code BiG BART in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the improved RADIOM model [3], which makes use of existing LTE data tables

    Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser

    Full text link
    The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics

    Study of rapid ionisation for simulation of soft X-ray lasers with the 2D hydro-radiative code ARWEN

    Get PDF
    We present our fast ionisation routine used to study transient softX-raylasers with ARWEN, a two-dimensional hydrodynamic code incorporating adaptative mesh refinement (AMR) and radiative transport. We compute global rates between ion stages assuming an effective temperature between singly-excited levels of each ion. A two-step method is used to obtain in a straightforward manner the variation of ion populations over long hydrodynamic time steps. We compare our model with existing theoretical results both stationary and transient, finding that the discrepancies are moderate except for large densities. We simulate an existing Molybdenum Ni-like transient softX-raylaser with ARWEN. Use of the fast ionisation routine leads to a larger increase in temperature and a larger gain zone than when LTE datatables are used

    Etude de l'influence de l'environnement plasma sur les sections efficaces d'excitation collisionnelle Ă©lectron-ion dans un plasma chaud et dense

    Get PDF
    Président : Jacques Dubau ; rapporteurs : Thomas Blenski et Bernard Talin ; examinateur : François PerrotCollisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbated potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric microfield of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submited to a realistic microfield. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening.Les sections efficaces d'excitation collisionnelle sont des ingrédients essentiels dans la modélisation des propriétés radiatives d'un plasma hors équilibre thermodynamique. Dans le cas où le système électron-ion peut être considéré comme isolé, diverses méthodes quantiques issues de la théorie de la diffusion existent pour traiter correctement ce problème. Dans un plasma dense, on s'attend à ce que les particules voisines perturbent considérablement ces transitions. La modélisation du plasma par l'intermédiaire d'un potentiel perturbateur purement radial à déjà été effectuée, mais elle n'est pas satisfaisante pour les excitations collisionnelles car elle ne parvient à rendre compte ni de la levée de dégénérescence des niveaux ni de ses conséquences. Nous avons levé la "symétrie sphérique" en introduisant le microchamp électrique quasistatique produit par les ions voisins. Cette étude théorique inédite nous a permis de réaliser un code numérique, calculant automatiquement les forces de collision et taux collisionnels d'ions complexes de manière précise (Distorted Waves) en présence d'un microchamp reproduisant fidèlement la réalité. Nous avons appliqué cette étude au cas de l'Aluminium hydrogénoïde et héliumoïde. La prise en compte du microchamp électrique sur les sections efficaces d'excitation collisionnelle fait apparaître notablement les transitions issues d'états de moment angulaire élevé. En particulier, les sections efficaces de transitions interdites en l'absence de microchamp augmentent de plusieurs ordres de grandeur en sa présence et deviennent de l'ordre de celles des transitions autorisées. Nous avons, en outre, réalisé un code collisionnel-radiatif stationnaire élémentaire pour évaluer l'influence de ces modifications sur les profils de raies correspondants. L'importance de l'effet précédent n'élargit, cependant, que légèrement les raies Lyman beta, gamma et Helium gamma

    Etude de l'influence de l'environnement plasma sur les sections efficaces d'excitation collisionnelle Ă©lectron-ion dans un plasma chaud et dense

    No full text
    Les sections efficaces d'excitation collisionnelle sont des ingrédients essentiels dans la modélisation des propriétés radiatives d'un plasma hors équilibre thermodynamique. Dans le cas où le système électron-ion peut être considéré comme isolé, diverses méthodes quantiques issues de la théorie de la diffusion existent pour traiter correctement ce problème. Dans un plasma dense, on s'attend à ce que les particules voisines perturbent considérablement ces transitions. La modélisation du plasma par l'intermédiaire d'un potentiel perturbateur purement radial a déjà été effectuée, mais elle n'est pas satisfaisante pour les excitations collisionnelles car elle ne parvient à rendre compte ni de la levée de dégénérescence des niveaux ni de ses conséquences. Nous avons levé la "symétrie sphérique" en introduisant le microchamp électrique quasistatique produit par les ions voisins. Cette étude théorique inédite nous a permis de réaliser un code numérique, calculant automatiquement les forces de collision et taux collisionnels d'ions complexes de manière précise (Distorted Waves) en présence d'un microchamp reproduisant fidèlement la réalité. Nous avons appliqué cette étude au cas de l'Aluminium hydrogénoïde et héliumoïde. La prise en compte du microchamp électrique sur les sections efficaces d'excitation collisionnelle fait apparaître notablement les transitions issues d'états de moment angulaire élevé. En particulier, les sections efficaces de transitions interdites en l'absence de microchamp augmentent de plusieurs ordres de grandeur en sa présence et deviennent de l'ordre de celles des transitions autorisées. Nous avons, en outre, réalisé un code collisionnel-radiatif stationnaire élémentaire pour évaluer l'influence de ces modifications sur les profils de raies correspondants. L'importance de l'effet précédent n'élargit, cependant, que légèrement les raies de couche K.Collisionnal excitation cross-sections are essential to modeling of out of equilibrium plasmas radiative properties. Many quantum resolutions of scattering have been successful in the treatment of isolated electron-ion systems. But in dense plasmas, neighbouring particles are expected to widely disturb these transitions. Plasma modeling through a radialy perturbated potential has already been done but is not satisfactory as it doesn't account for levels degeneracy breaking and its consequences. Introduction of quasi-static electric microfield of neighbouring ions has allowed us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisionnal strengths and rates (distorted Waves) submited to a realistic microfield. Hydrogen- and Helium-like Aluminium has been studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced of many orders until they reach allowed ones. Eventually, we wrote an elementary stationary collisionnal-radiative code to watch field-enhancement effects on corresponding fine shapes. Yet, the wide previous enhancement little broadens K-shell lines.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Equation of state and opacities for warm dense matter

    No full text
    This work presents recent developments in the calculation of opacity and equation of state tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code bigbart to compute opacities in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the new RADIOM model developed in [3], which makes use of existing LTE data tables. We use the screened-hydrogenic model [4] to derive the Equation of State (EOS) using the population and energy of each level
    corecore