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Abstract. We will present recent developments in the calculation of opacity and equa-
tion of state tables suitable for including in the radiationhydrodynamic code ARWEN [1]
to study processes like ICF or X-ray secondary sources. For these calculations we use the
code BiGBART to compute opacities in LTE conditions, with self-consistent data gener-
ated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken
into account by means of the improved RADIOM model [3], whichmakes use of existing
LTE data tables. We use the screened-hydrogenic model [4] toderive the Equation of State
using the population and energy of the levels avaliable fromthe atomic data.

1 Introduction

The complete study of an ICF target couples a great variety ofphysical effects that must be accounted
to get meaningfull results. At first we need to know the properties of matter at the states reached
during the ICF process. This means to cover a wide range of temperatures that reaches several keV
and densities from 1mg/cm3 to several times the solid density.

The radiation hydrodynamic codes like ARWEN [1], have to be supplied with thermodynamic and
radiative data. The accuracy of this properties is a key to get results close to the experiments. For
locar thermodynamic equilibrium (LTE) this data is arragedas functions of two state variables of our
system. For hydrodynamics the most common used state variables are density and internal energy,
while for radiation transport the most meaninful variablesare density and temperature.

To be able to solve the hydrodynamics a relation between pressure and the state variables density
and internal energy is needed. This relation is the Equationof State (EOS) which tell us the compress-
ibility of a material and then have a great influence on the hydrodynamics of the plasma.

The matter at high temperature like the plasma formed in the ICF targets emits a large amount of
energy in form of electromagnetic fields. In general, radiative properties of plasmas are important in
the study of high energy density matter. With more accurate radiative properties the physical picture
we obtain in simulations will be closer to reality.

Here is described a methodology to obtaind EOS and opacity tables with consistent data between
thermodynamics and atomic calculations. The challenge is to find the correct balance between accu-
racy and computational cost. We will show recent improvements in the BiGBART opacity code [5]
and study non-local thermodynamic equilibrium (NLTE) effects bias the improved RADIOM model
and also derive an EOS from atomic calculations.
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2 Radiative Model

Calculating these properties is a formidable task. Main difficulties come from the transition from LTE
models to full NLTE models, where a myriad of transitions between levels are needed for solving
a colisional-radiative system, with the increasing complexity of ions with increasing Z. The simplest
codes assume an average atom and calculates transitions between average orbitals. Other models merge
close configurations to obtain configuration-averages reducing the amount of levels to treat.

In order to reduce computational cost as much as possible BiGBART now uses modified FAC bi-
nary files to reuse the atomic data generated. Energy levels,radiative transitions and photoionization
cross-sections are calculated under request and stored in indexed binary files. This way, when generat-
ing opacity tables, the data generated in a temperature-density point is used, accessing and extracting
necessary self-consistent data.

Energy levels are applied in a full Saha system that yields the fractional ionization occupancies.
Ionization potentials are taken from literature [6,7] whenpossible or calculated with FAC. Ionization
potential lowering is accounted using the modified Stewart-Pyatt formula [8]. Mixtures are treated
consistently, iterating until both chemical potential andintrinsic densities converge.

A Voigt profile is used for line broadening with Doppler [9] and UTA Gaussian widths, and natural
[9] and colisional [10] Lorentzian widths.

2.1 NLTE effects

The RADIOM model mimicks NLTE properties at temperatureTe = Te(Z∗, EOS , opacity) with LTE
calculations at an equivalent temperatureTz. This is achieved by fitting the maximum of the charge
state distribution in NLTE atTe in an extended Saha equation with the LTE value atTz with the
standard Saha equation.

In figure 1 is shown the absorption coefficient and the emission of gold at 1000eV for LTE and
NLTE using the radiom model, both pictures uses the UTA modelwith FAC atomic data. The absorp-
tion coefficient for NLTE is higher than in LTE and the emission in NLTE islower, as spected because
in NLTE the excited states of the atom are more populated thanin LTE and then emission is lowered.

(a) Absorption, incm2/g. (b) Emission, in arbitrary units

Fig. 1. Radiative properties for Au at 19µg/cm3 and temperature of 1000eV (LTE data in green, NLTE data in
red).

3 Equation of State

EOS is computed using the screened-hydrogenic model (SHM) described in [4] for LTE. This model
gets the Helmholtz free energyF = F(ρ, T ) from the electronic configuration of the average atom. A
thermodynamic consistent EOS can be derived from the free energyF.
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In the figure 2(a) we compare the results from our EOS (full lines) using the SHM against the
Thomas-Fermi (TF) theory (dashed lines). In the TF model thechemical potential is the key variable.
We compare the pressure using the chemical potential from our SHM and from the TF model. Great
differences found at low temperatures.

Finally it is possible to improve our analytical EOS using anempirical correction as described in
[12] to make the thermodynamic data as close as possible to experimental data and ab initio MD simu-
lations, as it is shown in the figure 2(b) where a corrected EOSmodel is compared against the avaliable
data. In this figure is ploted the aluminum Hugoniot curve computed using the QEOS model [14] using
a pressure multiplier against experimental data and other models like the SESAME aluminum table
andab initio molecular dynamics data [13].

(a) Comparison between the Thomas-Fermi (tf,
dashed line) model and the screened-hydrogenic
model (bb, full line) derived from BiGBART for Al.

(b) Hugoniot curve for Al.

Fig. 2. EOS data for Al with several models and copared to experimental shock wave data

4 Comparison to experimental data

In order to test mixtures calculations we have included a mixture of iron with sodium fluoride [11].
Conditions determined were 59eV and 11.3 mg/cm3. We include non-relativistic (ALEXANDRIT
DCA) and relativistic (BIGBART DCA) hydrogenic calculations from older versions used in the In-
stituto de Fusión Nuclear.

The new FAC-UTA calculation shows in general a better fit, especially in the 100− 150eV range,
showing the absorption peak above 100eV which do not appear in the hydrogenic calculations.

5 Conclusions and future work

The methodology and models used to compute EOS and opacitiesin the Instituto de Fusión Nuclear
have been presented in this work. This data are stored in tables suited to be used in radiation hydrody-
namic codes like ARWEN. This methods can obtain accurate atomic properties for several materials
using well-known models and with a very fast algorithm.

Future work will include testing of RADIOM model in simulations and developing a full NLTE
module in BiGBART and also developing an EOS consistent withthe atomic calculations for NLTE.
Also a time-dependent ionization routine has been developed [15] to get the charge state evolution
including NLTE effects and then corrections to the opacities and EOS must be applied to account this
NLTE effects.



EPJ Web of Conferences

(a) Transmission using the DCA model. (b) Transmission using UTA model and tak-
ing atomic data from FAC.

Fig. 3. Spectral transmision for a mixture of Fe and NaF at plasma conditions of 59eV and density of 11.3 mg/cm3.
The equivalent areal density is 339µg/cm2.
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