4,950 research outputs found

    Drones and sensors ecosystem to maximise the "storm effects" in case of cbrne dispersion in large geographic areas

    Get PDF

    Acoustic attenuation rate in the Fermi-Bose model with a finite-range fermion-fermion interaction

    Full text link
    We study the acoustic attenuation rate in the Fermi-Bose model describing a mixtures of bosonic and fermionic atom gases. We demonstrate the dramatic change of the acoustic attenuation rate as the fermionic component is evolved through the BEC-BCS crossover, in the context of a mean-field model applied to a finite-range fermion-fermion interaction at zero temperature, such as discussed previously by M.M. Parish et al. [Phys. Rev. B 71, 064513 (2005)] and B. Mihaila et al. [Phys. Rev. Lett. 95, 090402 (2005)]. The shape of the acoustic attenuation rate as a function of the boson energy represents a signature for superfluidity in the fermionic component

    The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive cancer with high resistance to chemotherapeutics. CCA is enriched in cancer stem cells, which correlate with aggressiveness and prognosis. FXR, a member of the metabolic nuclear receptor family, is markedly down-regulated in human CCA. Our aim was to evaluate, in primary cultures of human intrahepatic CCA (iCCA), the effects of the FXR agonist obeticholic acid (OCA), a semisynthetic bile acid derivative, on their cancerogenic potential. Primary human iCCA cell cultures were prepared from surgical specimens of mucinous or mixed iCCA subtypes. Increasing concentrations (0–2.5 μM) of OCA were added to culture media and, after 3–10 days, effects on proliferation (MTS assay, cell population doubling time), apoptosis (annexin V-FITC/propidium iodide), cell migration and invasion (wound healing response and Matrigel invasion assay), and cancerogenic potential (spheroid formation, clonogenic assay, colony formation capacity) were evaluated. Results: FXR gene expression was downregulated (RT-qPCR) in iCCA cells vs normal human biliary tree stem cells (p < 0.05) and in mucinous iCCA vs mixed iCCA cells (p < 0.05) but was upregulated by addition of OCA. OCA significantly (p < 0.05) inhibited proliferation of both mucinous and mixed iCCA cells, starting at a concentration as low as 0.05 μM. Also, CDCA (but not UDCA) inhibited cell proliferation, although to a much lower extent than OCA, consistent with its different affinity for FXR. OCA significantly induced apoptosis of both iCCA subtypes and decreased their in vitro cancerogenic potential, as evaluated by impairment of colony and spheroid formation capacity and delayed wound healing and Matrigel invasion. In general, these effects were more evident in mixed than mucinous iCCA cells. When tested together with Gemcitabine and Cisplatin, OCA potentiated the anti-proliferative and pro-apoptotic effects of these chemotherapeutics, but mainly in mixed iCCA cells. OCA abolished the capacity of both mucinous and mixed iCCA cells to form colonies when administered together with Gemcitabine and Cisplatin. In subcutaneous xenografts of mixed iCCA cells, OCA alone or combined with Gemcitabine or Cisplatin markedly reduced the tumor size after 5 weeks of treatment by inducing necrosis of tumor mass and inhibiting cell proliferation. In conclusion, FXR is down-regulated in iCCA cells, and its activation by OCA results in anti-cancerogenic effects against mucinous and mixed iCCA cells, both in vitro and in vivo. The effects of OCA predominated in mixed iCCA cells, consistent with the lower aggressiveness and the higher FXR expression in this CCA subtype. These results, showing the FXR-mediated capacity of OCA to inhibit cholangiocarcinogenesis, represent the basis for testing OCA in clinical trials of CCA patients

    A methodology for the customization of hinged ankle-foot orthoses based on in vivo helical axis calculation with 3D printed rigid shells

    Get PDF
    This study aims to develop techniques for ankle joint kinematics analysis using motion capture based on stereophotogrammetry. The scope is to design marker attachments on the skin for a most reliable identification of the instantaneous helical axis, to be targeted for the fabrication of customized hinged ankle-foot orthoses. These attachments should limit the effects of the experimental artifacts, in particular the soft-tissue motion artifact, which affect largely the accuracy of any in vivo ankle kinematics analysis. Motion analyses were carried out on two healthy subjects wearing customized rigid shells that were designed through 3D scans of the subjects’ lower limbs and fabricated by additive manufacturing. Starting from stereophotogrammetry data collected during walking and dorsi-plantarflexion motor tasks, the instantaneous and mean helical axes of ankle joint were calculated. The customized shells matched accurately the anatomy of the subjects and allowed for the definition of rigid marker clusters that improved the accuracy of in vivo kinematic analyses. The proposed methodology was able to differentiate between subjects and between the motor tasks analyzed. The observed position and dispersion of the axes were consistent with those reported in the literature. This methodology represents an effective tool for supporting the customization of hinged ankle-foot orthoses or other devices interacting with human joints functionality

    Biofortification: Effect of Iodine Fortified Food in the Healthy Population, Double-Arm Nutritional Study

    Get PDF
    It is estimated that one-third of the world’s population lives in areas where iodine (I) is scarce and its deficiency is responsible for many related disorders, such as goiter, reproductive failure, hearing loss, growth impairment, congenital I deficiency syndrome, and numerous kinds of brain injury. Mineral deficiencies can be overcome via dietary diversification and mineral supplementation. An alternative or even complementary way is represented by the intake of biofortified foods, which can tackle this lack of micronutrients. In this short-term double-arm nutritional intervention study, a cohort of ten people was supplemented with curly endive leaf biofortified with I and ten people with curly endive without biofortification (Intervention Study on Iodine Biofortification Vegetables (Nutri-I-Food – Full-Text View - ClinicalTrials.gov). The effects on whole-body homeostasis and specifically on I, glucose, lipid, and hepatic, iron metabolism was investigated. Blood samples were obtained at baseline and after 12 days of supplementation with curly endive and compared with controls. Hematochemical and urinary parameters were analyzed at baseline and after 12 days. The results showed that short-term I curly endive intervention did not affect the whole body homeostasis in healthy people and revealed an increase in I concentration in urine samples and an increase in vitamin D, calcium, and potassium concentration in blood samples only in the biofortified cohort respect to controls. This study suggests that short-term consumption of I curly endive crops is safe and could positively impact body health

    Numerical fluid dynamics simulation for drones’ chemical detection

    Get PDF
    The risk associated with chemical, biological, radiological, nuclear, and explosive (CBRNe) threats in the last two decades has grown as a result of easier access to hazardous materials and agents, potentially increasing the chance for dangerous events. Consequently, early detection of a threat following a CBRNe event is a mandatory requirement for the safety and security of human operators involved in the management of the emergency. Drones are nowadays one of the most advanced and versatile tools available, and they have proven to be successfully used in many different application fields. The use of drones equipped with inexpensive and selective detectors could be both a solution to improve the early detection of threats and, at the same time, a solution for human operators to prevent dangerous situations. To maximize the drone’s capability of detecting dangerous volatile substances, fluid dynamics numerical simulations may be used to understand the optimal configuration of the detectors positioned on the drone. This study serves as a first step to investigate how the fluid dynamics of the drone propeller flow and the different sensors position on-board could affect the conditioning and acquisition of data. The first consequence of this approach may lead to optimizing the position of the detectors on the drone based not only on the specific technology of the sensor, but also on the type of chemical agent dispersed in the environment, eventually allowing to define a technological solution to enhance the detection process and ensure the safety and security of first responders

    Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms

    Get PDF
    Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts

    Design of miniaturized sensors for a mission-oriented uav application: A new pathway for early warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Dual-readout Calorimetry

    Full text link
    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\sigma}/E ≈\approx 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape

    Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility

    Get PDF
    Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone fragility fractures compared to nondiabetic subjects. This increased fracture risk may occur despite normal or even increased values of bone mineral density (BMD), and poor bone quality is suggested to contribute to skeletal fragility in this population. These concepts explain why the only evaluation of BMD could not be considered an adequate tool for evaluating the risk of fracture in the individual T2DM patient. Unfortunately, nowadays, the bone quality could not be reliably evaluated in the routine clinical practice. On the other hand, getting further insight on the pathogenesis of T2DM-related bone fragility could consent to ameliorate both the detection of the patients at risk for fracture and their appropriate treatment. The pathophysiological mechanisms underlying the increased risk of fragility fractures in a T2DM population are complex. Indeed, in T2DM, bone health is negatively affected by several factors, such as inflammatory cytokines, muscle-derived hormones, incretins, hydrogen sulfide (H2S) production and cortisol secretion, peripheral activation, and sensitivity. All these factors may alter bone formation and resorption, collagen formation, and bone marrow adiposity, ultimately leading to reduced bone strength. Additional factors such as hypoglycemia and the consequent increased propensity for falls and the direct effects on bone and mineral metabolism of certain antidiabetic medications may contribute to the increased fracture risk in this population. The purpose of this review is to summarize the literature evidence that faces the pathophysiological mechanisms underlying bone fragility in T2DM patients
    • …
    corecore