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Abstract: The risk associated with chemical, biological, radiological, nuclear, and explosive 

(CBRNe) threats in the last two decades has grown as a result of easier access to hazardous materials 

and agents, potentially increasing the chance for dangerous events. Consequently, early detection 

of a threat following a CBRNe event is a mandatory requirement for the safety and security of 

human operators involved in the management of the emergency. Drones are nowadays one of the 

most advanced and versatile tools available, and they have proven to be successfully used in many 

different application fields. The use of drones equipped with inexpensive and selective detectors 

could be both a solution to improve the early detection of threats and, at the same time, a solution 

for human operators to prevent dangerous situations. To maximize the drone’s capability of 

detecting dangerous volatile substances, fluid dynamics numerical simulations may be used to 

understand the optimal configuration of the detectors positioned on the drone. This study serves as 

a first step to investigate how the fluid dynamics of the drone propeller flow and the different 

sensors position on-board could affect the conditioning and acquisition of data. The first 

consequence of this approach may lead to optimizing the position of the detectors on the drone 

based not only on the specific technology of the sensor, but also on the type of chemical agent 

dispersed in the environment, eventually allowing to define a technological solution to enhance the 

detection process and ensure the safety and security of first responders. 

Keywords: detection; CBRNe; drone; MOX; chemical sensor; simulation; fluid dynamics  

simulations 

 

1. Introduction 

The rise of new technologies, such as drones, and the improvement of their 

capabilities, nowadays allows to potentially design and develop useful detection and 

sampling systems that may be aimed at limiting the exposure to hazardous agents of the 

workforce and of the population following a chemical, biological, radiological, nuclear, 

and explosive (CBRNe) event. Factors such as early detection and alarms are primary 

requirements to consider when designing and deploying new technologies in the field of 

CBRNe events’ management [1–4]. 

CBRNe events may belong to either the hostile or accidental dimensions. 

Intervention by responder teams is quite complex and needs to be structured in many 

phases. When approaching a dangerous scenario, the first and most critical phase is 

Citation: Marturano, F.; Martellucci, 

L.; Chierici, A.; Malizia, A.;  

Giovanni, D.D.; d’Errico, F.;  

Gaudio, P.; Ciparisse,J.F.; Numerical 

Fluid Dynamics Simulation  

for Drones Chemical Detection. 

Drones 2021, 5, 69. https://doi.org/ 

10.3390/drones5030069 

Academic Editors: Diego  

González-Aguilera and Pablo 

Rodríguez-Gonzálvez 

Received: 21 June 2021 

Accepted: 24 July 2021 

Published: 29 July 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Drones 2021, 5, 69 2 of 15 
 

usually considered “situational awareness”; indeed, the right perception of the potential 

hazards is the basis for the future decision-making process. Being able to characterize a 

CBRNe event in terms of time, space, required actions, and operations is a fundamental 

step to successfully protect the public, the workforce, and the environment. Such an 

approach is commonly the best suited to ensure a fast and effective operative response 

when facing a wide range of dangerous situations. A good situational awareness could 

mean the difference between life and death of both rescuers and responders; in order to 

protect themselves and others against a CBRNe event, responders must assess as soon as 

possible the nature and proportion of the threat/hazard for subsequent life-saving and 

decontamination operations. In order to possess the right situational awareness, first 

responders not only need to be very well prepared, but they shall use whatever tool or 

technology available to them to enhance their response capabilities [5]. 

Mobile robot olfaction (MRO), the field of robotics where intelligent mobile platforms 

are equipped with a mixture of chemical sensors, has made tremendous progress in the 

last few years. Monitoring of environmental gases for risk assessment both indoors and 

outdoors usually requires a complex sensor system and a long operational time. A typical 

application field is gas pipelines’ monitoring, where MRO equipped drones are used to 

monitor and localize a dangerous dispersion along the pipeline. The idea of installing a 

portable gas detector in a mobile robotic platform was first described in [6] for the 

localization of gas dispersion in nuclear power plants with the aim to minimize workforce 

exposure to dangerous environments. From the advancement of autonomous robots, 

different application results from the integration of specific sensor, to different kinds of 

mobile platforms [7], such as for firefighting, demining, environmental monitoring, and 

search and rescue [8–11]. Mobile robots are effective tools for replacing the workforce in 

repetitive tasks, such as continuous monitoring; they can work in a hostile environment 

(e.g., chemical and radioactive dispersion, oxygen-deficient, or hostile environment) and 

explore impervious areas that cannot be easily reached by human operators. Moreover, 

the use of this kind of system is twofold: support and monitoring application of the 

chemical dispersion, whereas it could be used even for direct response to the event [12]. 

Such aspects make drones a suitable platform in the context of CBRNe events’ 

management [13–16]. 

MRO systems need on one hand to satisfy the requirements of early disaster 

response, where a high degree of mobility, fast operation, and highly efficient 

collaboration with human operators and decision makers are crucial; on the other end, 

MRO systems also need to satisfy the needs of long-term monitoring when less critical 

events affecting permanent infrastructures may exist. 

Recent advances in mobile robot platforms, specifically in drones’ technology, 

together with the improvements in the performance of chemical detectors, nowadays 

present a great prospect to deploy an integrated platform in a wide range of applications. 

Furthermore, recent advances in the miniaturization of chemical instrumentation as well 

as data processing algorithms and methodologies allow to better understand the nature 

and the origin of the chemical dispersion event [17–19]. For example, micro aerial vehicles 

(MAVs) equipped with gas detection systems and/or sampling devices have already been 

used in the field of environmental monitoring [11–27], volcanic gas sampling [28–32], 

localization of gas dispersion [33,34], early fire detection [35,36], precision agriculture [37–

39] landfill monitoring [40–42], disaster response [43,44], demining [45], and others [46–

48]. 

The use of inexpensive, low complexity sensors mounted on small commercial 

drones for the detection of specific substances could respond to the requisites of rapid 

response to a threat and allow to satisfy the safety requirements for the operators involved 

in a chemical release event. However, a potential problem in the accuracy of the acquired 

data arises when low-cost chemical sensors are used on board a drone because of the 

vortexes generated by the propellers mainly during the approaching phase, thus 

preventing the sensor from correctly detecting the presence of hazard substances or 
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misreading the real concentration of the substance. Several works indicate that the 

problem of the turbulence generated by drone propellers may strongly affect the chemical 

sensor signals. In the work of Rossi et al. [26] and Burgues [22], the applicability of nano-

drones for gas sensing tasks is explored: preliminary indoor experiments using nano-

drones equipped with metal-oxide semiconductor (MOX) gas sensors showed that the air 

drawn around the airframe strongly affects the sensor response, basically resulting in 

useless signals. 

To reduce the interferences of the drone propellers on the behavior of the chemical 

sensors, this work is aimed at optimizing the position of the detectors on the drone 

platform in order to maximize the effectiveness of sensor detection. A series of fluid 

dynamic simulations have been performed, aimed at improving the capability and the 

proficiency of such mobile systems to correctly collect data during the drone approaching 

phase by optimizing the position of the sensors on the drone body. 

2. Materials and Methods 

In this section, the authors describe the methodology to evaluate and improve the 

performances of metal oxide chemical sensors when used on board a drone, taking into 

account the fluid-dynamics interaction through the software COMSOL Multiphysics® 

(COMSOL Inc., Stockholm, Sweden [49]). The authors provide an explanation of the 

advantages of using numerical simulation versus experiments followed by the case study 

analyzed in this work. The last two parts of these sections are devoted to explaining the 

models and the designed geometry, respectively. 

The design of a mobile system, such as a drone platform for the detection, 

identification, and monitoring of a chemical substance release, requires a deep analysis of 

the interference that the propulsion of the drone itself produces owing to the volatile 

nature of the chemical substances that the system needs to analyze. In order to understand 

if a specific design of a drone equipped with chemical sensors will be able to correctly 

detect the target substance/particles during different phases of flying, such as 

approaching and hovering, studies on the fluid-dynamics of the vortexes generated by the 

propellers need to be performed. 

Drones come in different shapes, sizes, and configurations. Among the most used 

configurations are the quadcopter and hexa-copter. While the first is more commercially 

and widely available for hobbyist, the hexa-copter configurations are usually aimed at 

professional and specialized applications. To carry out a simulation of a realistic drone 

platform, a 3D drone was modelled based on an existing prototype. A specific commercial 

drone that has already been the object of trials in the CBRNe domain is the SR-SF6 (Figure 

1). It is a hexa-drone created by Skyrobotics, which has shown good performance when 

applied in a wide range of applications. For example, it has been modified to host a bio-

chemical aerosol detector and sampler system with the goal of being used as a tool in the 

management of CBRNe scenarios. In this work, the hexa-drone was chosen as the 

reference drone to be modelled in the simulation thanks to its relatively simple structure 

and good performance balance in terms of speed, stability, and aerodynamic control 

compared with commercially available quad-copters and octa-copters. 
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Figure 1. SR-SF6 by Skyrobotics. 

Because of the volatile nature of the substances, experimental tests could lead to un-

predictable results and require a strong effort to define an experimental set. Moreover, the 

repeatability of the experimental set between different cycle makes it hard to achieve par-

ticularly in the particle dispersion flow. Fluid-dynamic simulations, mainly carried out to 

optimize the positioning of the chemical sensors on a drone platform to minimize the fluid 

dynamics interference of the propeller, could lead to an optimal system able to correctly 

acquire the data from the chemical sensors used. In computational fluid dynamics (CFD), 

finite volume algorithms subdivide the fluid domain into several little volumes in which, 

once the boundary conditions are imposed, the Navier–Stokes equations solve the prob-

lem using an iterative method [50]. Each fluid is then characterized by its macroscopic 

properties such as density, viscosity, pressure, and so on. The CFD equations can predict 

with a reasonable degree of approximation the behavior of fluid flow with a mathematical 

model and numerical methods. A set of pre- and post-processing algorithms are usually 

applied to visually correct the error in the resolution of the system and to help perform 

the virtual simulations. To correctly set up the variables in the CFD simulation, attention 

should be paid to the following properties: 

 Aerodynamics of the model; 

 Weather conditions; 

 Particle characteristics and type of dynamics. 

At the end, the CFD simulation provides a solution for complex flow problems that 

may be expensive and not reliable in real experimentation. 

2.1. Aim of the Investigation 

The present study addresses the problem of the optimization of the chemical sensor 

location on the drone to avoid the interference on the sensors owing to the propulsion 

used in the drones. Specifically, the flow from the propellers could cause the loss or cor-

ruption of the data collected from the sensors owing to the turbulence area and the dis-

persion of the concentration around the propeller. 

2.2. Fluid Dynamics Models 

In this work, the dispersion of ammonia due to an accidental release is being simu-

lated, and the sensitivity of sensors placed in different areas of the drone is analysed. As 

ammonia is a common by-product of several chemical industrial processes, and as it is an 

irritant, toxic, and uncoloured gas, it was chosen as the representative chemical substance 

of choice in this study. Because of its molecular characteristics, ammonia is more danger-

ous compared with more volatile substances, and its stagnation could create a dangerous 

area. Moreover, the use of ammonia in low concentrations does not represent a large 

threat to human life; therefore, it represents a good candidate to perform an experimental 



Drones 2021, 5, 69 5 of 15 
 

campaign aimed at characterizing the detecting capabilities of different kinds of chemical 

sensors, such as MOXs. It has to be highlighted that such an approach should be avoided 

for concentrations larger than the lower explosion limit (LEL). 

The numerical model is a multiphase mixture model, where two phases are consid-

ered: air and ammonia. The first equation used to simulate the event is the continuity 

equation, which describes the conservation of the mass:  

��

��
+ ∇(��) = 0 (1)

where � is the velocity vector and � is the density of the mixture. The momentum con-

servation is taken into account by a set of three equations:  

�
��
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+ ��∇(�) = −∇� + �� + ∇� (2)

where � is the pressure and 
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where � is the dynamic viscosity, �� is the turbulent viscosity, � is the identity matrix, 

and � is the turbulent energy. The turbulent variables are calculated by the k-ε turbulent 

model, which describes, using a two equations approach, the turbulent kinetic energy (�) 

and the turbulent dissipation ratio (ε): 
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��∇ ∙ � (6)

�� =
�����

�
  (7)

The turbulent model constants are �� = 0.09, ���= 1.44, ��� = 1.92, �� = 1, and �� = 

1.3.  

The mixture properties are calculated by the mixture flux equation: 

�
���

��
+ ���∇(�) + ∇�� = 0 (8)

where �� is the mass fraction of the i-th phase and �� is the mass flux vector, calculated 

taking into account both diffusion and convection. 

2.3. Settings of COMSOL Multiphysics Parameters 

To run a CFD simulation, the software needs to process the data modelling the drone 

and the volume where the simulation is going to be carried out with well-defined bound-

aries. For this simulation, it was decided to consider a cube of air with a linear length of 

50 m (L) (Figure 2), assuming the drone position is at the centre of the volume. 

Transforming partial differential equations (PDEs) into algebraical equations while 

working on the entire model might introduce significant errors into the results. To avoid 

this problem, the surface is divided into a number of sub-elements of geometrical simple 

shapes (tetrahedrons) to be studied one by one in order to increase the goodness of the 

approximation and remove the final errors. The mesh settings determine the resolution of 

the finite element mesh used to discretize the model. The mesh used in a fluid flow simu-

lation depends on the fluid flow model and on the accuracy required in the simulation. 
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Generally, a fluid flow model requires a fine resolution to converge. The finer the resolu-

tion (number of sub cells), the better the goodness of the approximation and the lower the 

error of the final result. 

 

Figure 2. Schematics of the numerical simulation geometry. 

Two different meshes are used for the simulation: a first one for the reference volume, 

characterized by larger sub-elements; and a second one for the drone, whose dimensions 

require the sub-elements to be much smaller. Once an assessment about the virtual envi-

ronment is completed, with the fundamental boundary conditions, the geometry of the 

drone can be created by choosing a simplified geometric shape and by providing the spa-

tial information to the system. The geometry of the drone was created starting from a 

three-element shaped body using an ellipsoid for the central body, while cylindrical 

shapes were used to model the rotor and the ducted propeller. The cylindrical shape is an 

approximation of the propeller area for simulating the inlet and outlet surface in the sim-

ulation of the flow, whereas the ducting effects are not taken into account. These compo-

nents are joined by the arm connecting the rotor shape with the central body, respectively. 

The union of these three separate parts was then used to define the final ensemble shape 

into a single body. Finally, the drone was completed, with the exception of the sensors, by 

maintaining the center of the ellipsoid as a fulcrum and applying a rotation on the XY 

plane by an alpha angle equal to 60 degrees five times and gluing all the parts together 

(Figure 3). 

 

Figure 3. Schematics of the drone geometric components. 
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In order to validate the CFD simulation results by comparing them with experi-

mental data, a fundamental step involves the choice of the model of the chemical sensors, 

which needs to take into account both the availability of the sensor in the market and the 

volatile substance to analyze. The aim of the simulations is the analysis of a specific area 

contaminated with ammonia, thus an MQ137 chemical sensor was selected as the detector 

to be modeled in the simulation thanks to its low cost, commercial availability, and ease 

of use in a real environment. Moreover, MOX technology is today one of the most used in 

the context of MRO thanks to the relative rapid prototyping requirements. MOX sensors 

in the simulation are modelled as a sphere with radius of 5 cm to better approximate the 

shape and simplify the fluid dynamics computation. To simulate a release of ammonia in 

the environment for the bi-component simulation, a solid sphere releasing the particles in 

all directions at a speed of 0.5 m/s was configured. In the first set of simulations, aimed at 

evaluating the propeller interference, the releasing source was located at 5 meters on the 

X-axis, at 15 meters form the ZX plane along the Y-axis, and at 25 meters from the ZY 

plane along the X-axis. Wind was introduced as a parameter, blowing along the Y-axis 

direction at a speed of 3 m/s. 

The simulation will run with configurations having two different locations of the sen-

sors positioned on the drone. The first configuration considered is the nadir position (un-

derneath the central body ellipsoid) of the drone hosting a single sensor, whereas the ra-

dial configuration of the sensors hosted six sensors radially displaced around the outer 

edge of each propeller (Figure 4). 

 

Figure 4. Nadir (left) and radial (right) sensors’ displacement. 

The study of the flow and the interference of the propeller were carried out for two 

different virtual environment settings: the first setting considers only the presence of the 

air as a unique fluid flow, namely mono-component CFD simulation, whereas the other 

setting takes into account the presence of the dispersion source (inlet) of ammonia that 

spreads the volatile substance into the air at a specific height, namely bi-component CFD 

(owing to the mixing of ammonia with the surrounding air). Regarding the latter config-

uration, the simulation of fluid flow is more complex compared with the single fluid be-

cause the different properties of the molecules give rise to different behaviors when mixed 

together. 

The last groups of settings required to define the simulation, taking into account the 

prototype of the drone with the sensors and the releasing point (modelled as a sphere) 

had to be positioned inside the reference volume. 

3. Results and Discussion 

To test the optimal positioning of the detectors, two simulations were carried out, 

each characterized by different displacement of chemical sensors on the drone body. A 

first check of the goodness of the simulations could be performed during the run of the 

simulation itself. The convergence of the velocity, pressure, volume fraction of the disper-

sion, and turbulence variables can always be observed on the run. Therefore, it was ob-

served that the errors of the solutions just stabilized to a constant value as the number of 

iterations was increasing. The difference of a 10-3 factor between the error values was as-

sumed to be dictated by the numerical model used and the computational algorithms. 
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By examining the flow lines in the simulation, the air flow follows the expected path; 

that is, it exits from the reference volume into the upper side of the ducted propeller and 

re-enters the reference volume from the lower side (Figure 5a). It is important to note that 

the flow re-entering into the volume is accelerated and concentrated in a coherent down-

wash until the ground interference dissipates it radially (Figure 5b). Moreover, it is im-

portant to consider that the air flow that enters into the propeller duct not only is directly 

influenced by the propeller action on the vertical space, but also derives from the outer 

boundaries of the ducts; in fact, the fluid starts its acceleration downward, and the mass 

flow claimed from the propeller increases with the propeller velocity. 

 
(a) (b) 

Figure 5. (a). Flow ground radial dissipation (b). Fluid Flow simulation lines. 

By analyzing the air speed and fluid flow, we can instead observe that the air is being 

accelerated on top of the ducted propeller with a speed close to 8–9 m/s, and the same 

value is maintained for almost 2 meters downward, where it starts to slow down at 5–6 

m/s (Figure 6). The speed of air is still effective as the air flow hits the ground at 25 meters 

with a speed of 1–3 m/s. Furthermore, the air flow assumes a larger radial angle as it leaves 

the drone such that the flow cross section at ground level is almost double with respect to 

the cross section below the drone. 
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Figure 6. Air speed behaviour. 

The air flow section underneath the central ellipsoid shows an interesting feature: the 

air flow has an acceleration between 2 and 4 m/s. As the air flow downstream expands 

below the propeller, it merges down at 2 meters with another air flow. This phenomenon 

creates a vortex (a local vorticity generated by the drone propeller) that redirects upward 

the flow under the nadir area and finally forces it to re-join the mainstream downward 

from the propeller (Figure 7). The toroidal recirculation under the nadir made by the six 

propellers creates the increment in speed toward the sensor located under the centre of 

the drone. This implies that, in order to detect chemical substances under the drone, the 

aerosol/particles first need to be attracted by the propeller, then pushed downward, and 

finally reach the sensor after being recirculated upward in the toroidal pattern. 

 

Figure 7. Downstream of the hexacopter. 
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Given the strength of the downstream, which creates a virtual wall around the sen-

sor, it may be difficult for the drone to detect anything when flying at medium to high 

altitudes unless the plume is higher than the propellers. Flying at low altitudes will in-

stead facilitate the detection as the downstream of the air flow will increase the terrain 

turbulence by impacting with the ground at a high speed. Furthermore, once the chemical 

substance is accelerated through the ducted propeller and reaches the sensor, its concen-

tration could change enough to be detectable during a measurement. 

In the other setting, namely the radial configuration, the sensors are displaced in the 

outer ring of the propeller; here, the presence of several other surfaces gives rise to a fluc-

tuating error affecting the convergence of the variables considered in the simulation. 

Most of the considerations and analysis for the nadir configuration are applicable for 

the radial configuration as well, where the sensors are placed in the outer ring of the pro-

pellers. The pressure velocity values as well as the turbulent variables need to converge 

to a constant value as the number of iterations increases. Given the presence of several 

other aerodynamic surfaces, in this configuration, the pressure and velocity values will 

converge too, but they will maintain a fluctuating error range with an average value of 

10−9. Despite this fluctuation error in the convergence of the values of the variables, the 

radial setting seems to offer an interesting solution for enhancing the detection compared 

with the nadir sensor location. Whereas the nadir sensor is limited to sampling the parti-

cles that arise from the below vortex that redirect the flow upward, sensors in the radial 

configuration appear not to be influenced by the acceleration of the air flow (Figure 8). As 

the drone hovers on a stationary plane and is reached by a chemical plume, none of its 

rotors downstream flows should affect it before it detects the chemical presence from a 

lower altitude. Moreover, if the chemical plume flows at the same altitude of the drone, 

then the upper rotor air-need would accelerate the air radially from outside, forcing the 

mixture to impact the sensors before it is sucked into the ducted propeller rotors. 

 

Figure 8. Air flow behavior for the radial configuration. 

3.1. Bi-Component Simulation 

In the bi-component (ammonia and air) simulation, where the ammonia source is 

introduced into the environment, the influence of the wind direction and intensity (3 m/s) 

results in a turbulence both in proximity to the drone air flow and in proximity to the 

release point (Figure 9). As the wind velocity is higher than the normal air flow in the 

reference volume above the drone, the flow lines coming from the propeller described by 

the simulation are dominated by the wind direction and intensity. After entering the ro-

tors, they are twisted and accelerated downwards, but are still affected by the external 

wind direction. 
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Figure 9. Turbulence around the drone (left) and around the emission sphere (right) owing to the 

introduction of the wind vector. 

In the final simulation, the reference volume was resized to become a parallelepiped 

(50 m × 50 m × 300 m) with the drone positioned at 225 meters from the ammonia source 

and lowered to be 5 meters higher than the source. The nadir drone bi-component simu-

lation in the new reference volume shows the same results for both velocity magnitude 

and flow lines behavior graphs as for the previous reference volume (cube). It should be 

noted that the different speed in the volume around the drone is not related to the refer-

ence plane (ZX) including two ducted propeller rotors (as for the first mono component 

simulation), but it is related to the reference plane (ZY) passing for the ammonia sphere 

and crossing the drone between its rotors. The nadir drone bi-component simulation in 

the new reference volume shows the same results for both the velocity magnitude and 

flow lines behavior graphs found for the previous reference volume (cube). It should be 

noted that the different speed areas around the drone in the section view are not related 

to the reference plane (ZX) including two ducted propeller rotors (as for the first mono 

component simulation), but they are necessarily connected to the reference plane (ZY) 

passing for the ammonia sphere and crossing the drone between its rotors. 

The nadir drone simulation provides interesting results when analyzing the mass 

fraction and, more specifically, to understand if the sensor detects a certain concentration 

of ammonia particles. Mass fraction is defined as the mass of one chemical species in a set 

volume divided by the total mass of species in the same volume. It is normally calculated 

in parts per million (ppm). With COMSOL software, it is possible to calculate the concen-

tration of ammonia at any specific point, thus it is possible to assess if any sensor in a 

specific location on the drone will be able to detect the presence of the contaminant. By 

focusing on the mass fraction of the contaminants around the drone, different concentra-

tion may result owing to propeller flow. In front of the drone, such as the radial position, 

the mass fraction appears uninterrupted, whereas under the drone, it decreases. By com-

paring the mass fraction in front of the forward rotor ducts (where the sensors are located 

on the radial position) and below the nadir of the central body of the drone, the difference 

in the concentration sampling of the two configurations is evident (Figure 10). Ranging 

from a minimum of 122.60 ppm to a maximum of 169.17 ppm with an average value of 

151.8 ppm, the radial design shows a detection capability 5.8 times higher than the nadir 

configuration, where the average sensor value is 26.089 ppm. 
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Figure 10. As the gas dispersion reaches the sensor in the radial configuration, frontal sensors detect 

the highest values in ppm, followed by the lateral sensors and thus back sensors, where a lower 

concentration level is detected. 

When considering an inexpensive commercial portable detector for industrial and 

domestic uses and sensitivity to ammonia such as the MQ137, and by comparing its mass 

fraction detecting threshold against the values for both the nadir sensor and the radial 

ones, the advantage of the radial configuration is evident. When a dispersed concentration 

changes (for example, by changing the relative distance to the emission source), and con-

sidering a reduction of 1/10 of the concertation, the limit of detection (LoD) of a real sen-

sors could make the sensor unable to detect the dispersion itself. In the case of MQ137, 

with an LoD of 5 ppm, a relative detection of 1/10 of the mass fraction implies that, in the 

nadir position, the possible detected concentration drops to 2.6 ppm, thus under the LoD 

of the sensor, whereas for the radial configuration, it drops to a 12.26 ppm. This implies 

that the nadir detection is under the threshold, whereas the radial sensor is still able to 

detect a useful level of concentration. 

4. Conclusions and Prospects 

Both CBRNe threats and hazards have evolved significantly over the last decades. 

Know-how and dangerous elements have become more accessible; consequently, the 

probability of a chemical or biological attack or casualty has grown significantly all over 

the world. It is obvious that every country in the world should be prepared to respond to 

a CBRNe event. Such a response is provided by the intervention of first responder teams, 

whose main task is focused on acquiring the correct situational awareness in order to save 

lives, rescue people, and decontaminate the hazardous area. A good situational awareness 

could mean the difference between life and death of both rescues and responders. In order 

to possess the right situational awareness, first responders not only need to be very well 

prepared, but they need to use whatever tool or technology available to enhance their 

capabilities. By providing all first responder teams with commercial drones equipped 

with inexpensive, low complexity sensors, capable of detecting a wide range of sub-

stances, the risk assessment process could be improved, ensuring the safety and security 

of the operators through a fast and effective response to the threat. 
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The main problem to be solved when sensors for chemical and biological detection 

are used on board of a drone is related to the vortexes generated by the drone propellers. 

Two different sets of computational fluid-dynamics simulations, using COMSOL soft-

ware and starting from a drone specific design, were carried out to demonstrate the effec-

tiveness and advantage of correct positioning of the sensors. 

In this work, the simulation of the fluid-dynamics variables in proximity to the drone 

and the sensors on two different configurations helped to identify the optimal positioning 

of the detectors in the case of a chemical release/dispersion scenario. The distribution of 

the concentrations of the particles around the drone with and without the wind interfer-

ence allowed to identify a radial configuration as an optimal solution for the detection of 

the chemical particles’ release. The results of the simulation emphasized how radial posi-

tioned sensors would be less affected by the rotors downstream of the drone compared 

with the one placed on the central belly. Moreover, as the virtual drone is a hexa-copter 

able to carry up to six radial sensors, a similar model could be considered a recommenda-

tion for further simulations and experimentations; for example, it may be equipped with 

six different low-cost and selective sensors among those to detect nerve agents, blister 

agents, chocking agents, blood agents, and riot control agents. If such a low-cost device 

will prove effective, it could determine an improvement in the detection of hazardous 

agents following a CBRNe event. By providing first responder teams of any organization 

in the world with such a kind of platform, a fast and full situational awareness and risk 

assessment could be easily achieved in order to face any challenge in different hostile en-

vironments. 
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