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 The advancements in the field of robotics, specifically in the aerial robotics, combined 

with technological improvements of the capability of drones, have increased dramatically 

the use of these devices as a valuable tool in a wide range of applications. From civil to 

commercial and military area, the requirements in the emerging application for monitoring 

complex scenarios that are potentially dangerous for operators give rise to the need of a 

more powerful and sophisticated approach. This work aims at proposing the use of swarm 

drones to increase plume detection, tracking and source declaration for chemical releases. 

The several advantages which this technology may lead to this research and application 

fields are investigated, as well as the research and technological activities to be performed 

to make swarm drones efficient, reliable, and accurate.   

 

Keywords: 

drone, swarm drones, CBRNe, chemical 

sensor, GSL. Robot Olfactory, plume 

detection, chemical detection   

 

 

 

 
1. INTRODUCTION 

 

In the contest of CBRNe scenario (Chemical Biological 

Radiological Nuclear Explosive), the safety and security of 

people and first responders are mandatory requirements, 

whereas the mitigation of risk for the operator should be 

accomplished by a preventive detection and monitoring of a 

threat. The detection of dangerous agents in the field is 

commonly demanded to operators equipped with sensor 

device that physically explore the location of the event. This 

behaviour exposes the workforce to hazard situations 

especially when the nature of the released agents is not known 

a priori. The use of robotics platforms equipped with sensors 

to explore, monitor, and sample the area of the event has 

increased in the last few years and has demonstrated the ability 

to collect information in a safety manner [1-3]. 

The rise of new technologies such as UAV (Unmanned 

Aerial Vehicle) and the boost of its capability will allow to 

develop a useful monitoring, detection, and sampling system 

aimed to remove dangerous situations for people and operators. 

Factors as fast alarm and detection of released agents are 

central aspects in the deployment of new technologies and 

approaches in the field of CBRNe. The use of inexpensive and 

low-power sensors for the detection of specific substances 

when combined with small commercial drone could respond 

to the requirement of rapid deployment and reaction to threats 

and allow to mitigate and remove hazard for the operators’ life. 

Moreover, such drones would expand the possibilities for 

emergency crews, who could thus fly the drone throughout 

indoor spaces, overcoming obstacles and limitations in 

emergency situations. 

Despite the fact that in the literature the gas source 

localization approaches are well based [4], these studies were 

mainly based on two-dimensional constraints and fixed gas 

sensor or ground-based mobile robots. Obstacles and rough 

terrain represent remarkable restrictions for the wheeled robot 

due to inability to freely move and explore complex 

environment. Open environment is another limitation where 

the focus area is large and complex, and the operational time 

may be too long. Moreover, combination of heterogeneous or 

homogeneous swarm of drones in this context are not yet fully 

explored due to the great technical and scientific challenges. 

For example, well established algorithms are used in mobile 

robotics in the planning and control phase, but the direct 

application to UAV is not allowed due to major differences 

that exists between ground and aerial vehicles.  

When gas sensor system is used on board to a mobile 

platform such as aerial vehicles, the evaluation of the systems 

needs to encompass different aspects. From the performance 

in the gas detection of a single sensor, requirements such as 

limited payload, power requirements, interference of the 

propeller local vorticity needs to be considered as a 

fundamental aspect in the design of the whole system. 

Thus, a sensor system needs to be evaluated in combination 

of a several aerial mobile platforms to optimize the application 

and successful accomplish a useful monitoring action.  

Multiphase strategies and a set of drones having different 

features in terms of size and capability equipped with a single 

or with array of sensors could overcome two main constraints 

in the problem of gas source localization and mapping. On one 

side, a configurable multipurpose sensor data acquisition 

could reduce the cost of the whole system by using a low-cost 

sensors such as MOXs, and it could improve the collected 

information thanks to the combination of such sensors or by a  
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spatial displacement [5]. 

On the other end, the use of a different drones, such as low-

cost and limited size aerial vehicles, could reduce the work 

(both in time and space) that a single drone would need to 

accomplish; such approach may allow to deploy a less time 

expensive research algorithms in terms of the whole 

application. Moreover, the use of small drone reduces the 

vortex propeller interference with a gas plume, thus the whole 

application with a small drone equipped with a low-cost sensor 

could benefit in the data augmentation due to a numerous and 

parallel sampling point from the swarm. 

The aim of this study is to investigate a new solution (a 

proof of concept) to improve the capability of a sensorized 

drone to monitoring, localize and explore a large geographical 

area in a CBRNe scenario. Specifically, we concentrate on the 

field of Robot Olfactory with a special focus on the Gas Source 

Localization (GSL) and Gas Concentration Mapping (GCM) 

algorithms. In this framework, the optimization of a sampling 

path and of a 3D monitoring solution need to be considered in 

combination with a multipurpose sensor system embedded on 

an autonomous flying platform. A new approach to the GSL 

problem is proposed as a complex system that could integrate 

at the same time different sensor technology and a scalable 

drone configuration in terms of numbers and category of 

drones (swarm drone) to overcome at the same time the 

limitations of specific class of sensor and optimize the use of 

a multiple heterogeneous drones for evaluate, compare and 

improve algorithms in plume finding, plume tracking, and 

source identification. 

 

 

2. DRONE ECOSYSTEM FOR CHEMICAL SENSORS 

APPLICATIONS 
 

The importance of fast and accurate monitoring for early 

identification of CBRNe events is a well-known problem. This 

motivates the use in such context of a flexible, autonomous 

and powerful sensing mobile platform able to quickly explore, 

collect and analyse data from a target area. The proposed idea 

is to develop a drone swarm to overcome some of the main 

problem that arise in the use of chemical sensors and drones 

and at the same time optimize both the detection, localization 

and identification of a chemical release. A fast resolution of 

the above aspects in a real scenario such as in an CBRNe 

context are mandatory requirements where the mitigation of 

risk for the operator should be accomplished by a fast 

preventive understanding of threats or continuous monitoring 

of the target area.  

 

 
 

Figure 1. Example of reducing time and spatial requirements 

with swarm of drones for plume finding 

The GSL problem could be structured into 3 sub-problems 

as suggested in Kowadlo and Russell [1]: plume finding, 

plume tracking and source declaration. The use of a single 

drone for these problems gives rise to a spatial and temporal 

constraint. For example, when the dispersion involves a large 

geographical area, the first phase in the GSL is the localization 

of the plume. Whereas a single drone equipped with a 

chemical sensor would need to explore a large area before the 

first concentration is identified, a swarm of drone deployed at 

the same time drastically increases the probability to early find 

the plume even in large research area (Figure 1). 

The probability to cross the plume in a multi-drone or 

swarm of drones solution increases drastically by dividing the 

research area, thus the time and power consumption of a single 

drone is obviously reduced allowing to increase the 

operational time for other tasks. Moreover, the exploration 

algorithms mainly consider the problem of 2D exploration. In 

a real environment, the dispersion of chemical substances is 

influenced not only by the wind direction, but also from the 

source emission altitude and by the conformation of the terrain. 

An optimized configuration of swarm of drone could reduce 

the time of exploration and allow to consider different altitudes.  

 

 
 

Figure 2. Example of loss plume for altitude plume 

dispersion 

 

The solution proposed in this case mitigates the problem of 

not crossing the plume if the dispersion is at a different altitude. 

For example, as seen in Figure 2, in the case of emission source 

at a certain height and under wind influence, the plume 

dispersion could not raise low altitude. Area between terrain 

and plume lower edge could not have sufficient concentration 

or information, thus a search path in this case could not find 

the first crossing of the plume. A drones’ deployment in a 3D 

formation that consider also the wind speed in relation to a 

probable height of conformation terrain could mitigate the loss 

of first crossing point.  

The second problem in the GSL and Mapping is the plume 

tracking and source localization. A lot of algorithms exist in 

literature, form Anemotaxis [1, 5] to Chemotaxis [6] and 

Infotaxis [7] approaches. The solution in these algorithms 

usually considers the use of a single point of sampling and 

optimize the path needed to localize or navigate through the 

plume for rapidly re-contacting the plume. All these 

algorithms are constrained by a temporal resolution due to the 

sampling time of the sensor and by a spatial and time 

resolution due to the limited speed of the drone. Both 

constraints heavily affect the algorithm performance in time 

and space. 

To overcome those limitations a more reliable solution is to 

deploy a swarm of drones able to collect information about the 
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plume in terms of shape and concentration at the same time. 

This configuration allows to increase the resolution of the 

plume tracking and localization tasks and at the same time 

reduces the operational time needed to converge to a correct 

solution. Thus, drone swarm can provide measurements with 

much better spatial resolution compared to a single drone or 

compared to an array of fixed detectors. Moreover, sampling 

in a different spatial location increases the spatial and time 

resolutions, and it could alleviate the interference and the 

aleatory states in real environment such as plume 

intermittency in turbulent flow and flow variations with both 

location and time (Figure 3). 

 

 
 

Figure 3. Comparison example of single and swarm drone 

source declaration. Whereas single drone requires more time 

and step to converge to a reliable solution (a,b), a simple 

formation of drones improve the spatial and time resolution 

and rapidly converge to a more precise solution (e,f). 

Moreover, sampling in different spatial location at the same 

time (g,h) allow to alleviate problems from variation in the 

environment conditions (c,d) 

 

In the case of identification of chemical substances, various 

low-cost gas-sensing technologies exists [8-13]. Some of the 

most popular gas sensor technology useful in a drone 

application are amperometric gas sensors (AGS) [14], metal 

oxide semiconductor (MOX) [15], non-dispersive infrared 

(NDIR) sensors, and photoionization detectors (PIDs) [16]. 

Furthermore, electronic e-nose such as sensors array that 

integrate a combination of multiple partially selective sensors 

and pattern recognition algorithms to quantify or discriminate 

volatile substances are a promising way to increase the 

selectivity of low-cost sensors [17-19]. 

Low cost and miniaturized sensors could help to define a 

first alarm when a chemical substance is detected. A more 

reliable solution is a system equipped with an array of multiple 

partially selective sensors whereas a pattern recognition 

algorithm could increase the quantification and discrimination 

capabilities of a gas sensor system [20-23]. Even if a 

combination of low-cost and less selective sensors could 

provide a useful information, this is not always feasible. For 

small drones with a limited payload, only a reduced set of 

sensors could be arranged on board. Thus, the most performing 

combination of sensors should be evaluated also taking into 

account the mobile platform specs. 

To optimize the whole system in terms of cost, operational 

time and fast identification of chemical releases, a 

heterogeneous fleet of drones could be deployed. In this 

configuration, small drones equipped with a low-cost sensor 

array are dedicated to a fast and parallel exploration, plume 

localization and tracking. The data about plume dispersion 

could be used to deploy a heavier and more specific sensor 

devices mounted on board to a more powerful drone to directly 

sampling the plume on a useful area, i.e. where the 

concentration is over the specific sensor limit of detection. In 

this scenario different technologies for drones and sensors 

ensemble to work together and collaborate to reduce the effort 

to fast and accurate localize, track, and identify a chemical 

event, even in a large area and turbulent environment. 

 

 

3. ROBOT OLFACTORY PROBLEM 

 

Robotic olfaction (RO) is a recent filed of research that 

involves many important technological and scientific 

challenges [24-29]. It refers to the use of mobile robots in 

combination with a sensing technology to perceive gas release 

in the environment [30]. Recent advancements in the design 

and development of gas sensors and drone technology as well 

as the adaptation of Artificial Intelligence and Machine 

Learning techniques for processing signals from sensors and 

robotics control have revealed RO as interesting research field 

in many practical applications [31, 32]. 

In general, the problem of RO can be seen through 3 main 

applications: Gas Source Localization (GSL), where the goal 

is to identify the location of the gas emission source [33-39], 

Gas Concentration Mapping (GCM) where a spatial 

representation (a map) of gas concentration in the focus area 

is created [40-43], and finally in the identification of released 

gas [44, 45]. Each of these problems requires specific 

algorithms and technologies to reaches a solution. Whereas a 

GSL and GCM could integrate into the same solution or 

application employing the same hardware, in the case of 

identification of a released agent or chemical compound a 

more complex solution in terms of sensor technology and data 

analysis are required. 

The aim of this preliminary research is to focus on an 

augmentation of the classical solution of the Gas Source 

Localization problem considering both the sensors and the 

mobile platform configuration to improve, at the same time, 

the data acquisition and reduce the cost of the operational time. 

This proof of concept considers the use a combination of low-

cost chemical sensors to improve the single data information. 

A combination of different drone platform for single, multiple 

and distributed sensor configuration starting from a low-cost 

and less specific sensor to a more powerful and specific sensor 

technology will be evaluate. This kind of scalable solution in 

terms of sensor technology and in terms of mobile platform 

could overcome some of the problems that in a real application 

represent a constraint factor in the Robot Olfactory field. 

 

3.1 Chemical instrumentation 

 

Recently, chemical instrumentation combined with limited 

size and weight sensors has seen a relevant improvement in 

terms of versatility, miniaturization, sensitivity, specificity 

and analysis. Mainly 3 useful categories of sensors could be 

used during the first phase of the application. 

 

3.1.1 Low-cost chemical sensors 

Low-cost chemical sensors such as Metal Oxide based 

detectors could provide a real-time signal whose amplitude 

corresponds to the concentration of the revealed gases and 

VOCs (Volatile Organic Compound). The working principle 

of this category of sensors is based on the change of electrical 
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resistance of the metal oxide surface when exposed to some 

gas at working temperatures (usually it includes a heater 

subcomponent).  

 

 
 

Figure 4. Some of the most used drone platforms. From left 

to right: a lightweight platform (crazyflie) to an industrial and 

professional platform (Matrice 600)  

 

Since they are characterized by low weight, limited size, and 

low cost, these sensors are a powerful choice to integrate on a 

mobile platform - such as a drone - for environmental 

monitoring (Figure 4). They are mostly used for measuring 

VOCs at concentrations in the order of few ppm and sub-ppm 

level, but they can also be used as an alternative technology 

for measuring some of the gases accessible to AGS (e.g., 

carbon monoxide). Moreover, even if the sensor is 

nonselective to a single gas, some techniques may be used to 

improve their selectivity. Among such techniques, the most 

popular one involves the use of multivariate predictive model 

that take into account the response across a sensor array [18]. 

Other useful techniques employ chemical filters [46] or doping 

techniques, such as the ones used in transistors [15]. 

The output signal of a MOX sensor is highly susceptible to 

humidity changes (indeed some metal oxides are used to 

fabricate humidity sensors, although this effect can be 

effectively mitigated by modulating its working temperature 

[21]. Thanks to micro-electromechanical systems (MEMS) 

technology, MOX sensors can now be fabricated with a 

miniaturized sensing layer deposited over a micro-hotplate, 

enabling sensors with a footprint of a few mm2 to achieve a 

response time of 5–10 s while maintaining a power rating of 

15–30 mW. The response time and power consumption can be 

further reduced by signal processing techniques [22, 23] and 

by duty cycle modulation of the sensor itself [23]. 

Another interesting chemical sensor type (PIDs) is based on 

the Photoionization effect. These sensors are sensitive to a 

wide range of VOCs and several inorganic gases. The working 

principles are based on the use of UV (Ultra Violet) light that 

ionizes the VOCs in a dedicated sampling cell: following 

ionization, the generated electrons and positive ions just drift 

towards the electrodes in the chamber, and a current 

proportional to the gas concentration is produced. Even if PID 

sensors are more accurate when measuring a low 

concentration (lower than 2000 ppm) they can measure a wide 

range of concentrations (from 10 ppb to 10000 ppm). A main 

limitation of this sensors consists in the limited response time, 

which is determined by the rate at which the sample is pumped 

through and flushed out form the detection chamber. Hand-

held instruments based on PIDs are commonly used in 

industrial sites and military applications for monitoring toxic 

VOCs [47]. The main problems of this type of instrument are 

the relatively high cost, the low specificity, and their inability 

to detect compounds with high ionization energy 

Usually, MOXs sensors are one of the most used in robotics 

olfactory applications for its low-cost, low time of response 

and simplicity in its usage, thus represent a useful candidate 

on board to a drone platform. In our research group (QEP 

Quantum Electronics and Plasma Physics Research Group 

[48]), a preliminary study of chemical sensors suitable for 

drone has been performed in the last year ([49-51]). A 

combination of different technologies such as LIDAR for 

preliminary dispersion detection has been evaluated with a 

drone equipped with a multisensor chemical platform. Future 

development of the multisensor mobile platform and 

integration with different technologies will be investigated and 

tested in a real environment.  

 

3.1.2 Sensor array and e-nose system 

Applications in environmental monitoring need to consider 

more than one chemical substance such as a compound of 

different chemical substances with different relative 

concentrations. A more reliable solution to detect such 

compounds is a multisensor system that embeds several 

chemical sensors: these sensors may also use different 

technologies such as MOXs and PIDs. Multiple partially 

selective sensors such as in an electronic nose or a sensor array 

is a system that integrates a more complex data analysis. 

Pattern recognition algorithms used in this kind of systems, 

benefit from a selective or discriminative response of the 

different type of sensors. For example, the e-nose analyse the 

multivariate response pattern of different array of sensors that 

are sensitive to a wide range of gases. Linear predictive models 

such as partial least squares (PLS), or non-linear methods 

based on support vector regression (SVM) or artificial neural 

networks (ANN) are commonly used to predict odour intensity 

[18]. 

One of the problems in this sensors’ configuration lies in the 

limitation of the low-cost sensors involved in the device. 

Moreover, a chamber of sampling is necessary to 

accommodate all sensors and to increase a system’s response 

time; however, both weight and power requirements need to 

be considered when trying to install such system on a drone. 

Whereas a simple array of sensors made from simple MOXs 

requires a minor improvement only in terms of power 

consumption, an e-noise solution that accommodate 10 to 15 

sensors, together with a sensing chamber, sees a drastic 

increase in power consumption and required payload. Recent 

improvements have been made for portable devices with a 

custom small, miniaturized sensing chambers mounted on 

drones that enable fast measurements [52].  

The use of an e-nose needs to take in account different 

factors when used on a drone. First, the power consumption 

due to the number of sensors and sensor type need to be 

considered and an external power source may be required. 

Weight, sizes, and power consumption requirements are not 

always compatible with a drone platform and its relative 

payload. When considering using a miniaturized drone swarm, 

a more reliable solution is to customize sensor configuration 

and data acquisition hardware to take into account the 

available payload and specific drone capability. A proposed 

solution in this case is to define a sensor configuration focused 

on a drone role and capability to optimize both the operational 

time and specific mission’s tasks. In a micro drone swarm, a 

single sensor or a little array of sensors such as MOXs specific 

for the scenario could represent a more useful solution, while 

a more powerful drone in terms of capability and payload 

could be equipped with an e-noise and control system for local 

or preliminary analysis of chemical agent. 
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3.2 Task and algorithms 

 

3.2.1 Gas source localization 

Gas Source localization (GSL) is a task which consists in 

finding the gas emission source point in a predefined the 

environment. Numerous applications give rise to this research 

field such as environmental, industrial and agricultural 

monitoring. In many of the realistic scenarios, the chemical 

release is spread in a large area due to the wind influences. 

Usually, this dispersion for a simulation and research purpose 

has been approximated as a dispersion plume concentration. 

Depending on the type of scenario, volatile agent compound 

and wind characteristics, a plume dispersion could reach 

several km downwind of the source.  

In plume finding algorithms, the main goal is to find an 

initial chemical signal from a chemical dispersion of the plume. 

A general algorithm for finding the first chemical clues is 

based on the area exploration algorithms, whereas in literature 

the most used approach is to integrate both plume finding and 

plume traversal approaches [1-9]. 

Furthermore, switching from plume finding to plume 

tracking need to be considered when a plume signal is lost, and 

different plume tracking algorithms could be used to locally 

reacquire the plume. The most used approach to tackle these 

initial subproblems usually consist in the chemical plume 

tracking phase based on bioinspired algorithms to follow the 

plume and try to optimally reacquire it [1-9]. 

The Gas source localization approaches that have been 

proposed are based on biological behaviour or bioinspired 

algorithms such as Chemotaxis and Anemotaxis approaches. 

Chemotaxis consider the gas distribution or the concentration 

gradient to define the direction of movement whereas 

Anemotaxis make movement based on sensed airflow. A third 

and more recent approached are based on a different strategy 

called Infotaxis [7]. Probability and information theory are 

used to model the most probable location of release and the 

release is modelled as a probability distribution built upon the 

previously collected concentration measurements. 

The fact that simple biological entities successful 

implemented an olfaction-based search has prompted the 

research into the design of autonomous mobile platform able 

to “simulate” the bioinspired behaviour to tackle the problem 

of chemical plume tracking and source localization. 

No one solution in general could be considered over the 

others, and some of the implementations and evaluations for 

Gas Source Localization and source declaration algorithms 

analyse the performance with a single sampling device. An 

interesting study is to evaluate both single algorithms in case 

of different configurations, sampling displacements and mixed 

approaches when multiple drones could define at the same 

time different information. For example, a spiral approach has 

been tested in single and multiple sampling [33, 52, 53], but 

some optimization could be considered for example by taking 

in account the change in wind direction. In a swarm 

displacement that cover a large area, spiral algorithms could 

be early stopped thanks to the information of the other team 

members. If a clue from other drones indicates that the plume 

has changed the direction, some drone with high probability 

doesn’t cross the plume during the spiral search phase, and it 

could be directly re-positioned in a location with a higher 

probability. Moreover, if the whole information of the plume 

indicates a specific plume distribution, the execution of a 

search algorithm could be changed to a more appropriate 

search paradigm [8, 31, 54, 55]). 

Similarly, an information collected from a swarm of drones 

could reduce the uncertainties in the sampling and tracking of 

the plume, and it could optimize the gas source localization 

algorithm further reducing the time required to perform the 

task. An evaluation of the combination of different swarm 

configuration and mixture of source localization could define 

the optimal parameters needed to reduce the cost and 

operational time in a wide range of application. 

 

3.3 Drones in the GSL application 

 

Over the Last decade, drone-based chemical monitoring 

system have emerged as a useful and alternative technique to 

traditional manned or fixed detectors platforms for tracking 

gas source releases. The fact that simple natural organism 

successful use olfaction-based approaches suggested the 

development in the use of drone as autonomous mobile 

platform in the robotics olfaction field. Such kind of 

autonomous mobile platform have different field of 

application ranging from hazardous chemical and pollutant 

dispersion identification to environmental and industrial 

monitoring and finally to the mapping of a chemicals in 

dangerous areas. In addition to aerial mobile devices, both 

sensor development and data analysis algorithms for chemical 

plume tracking, identification and monitoring are a critical 

factor to find the solution of this kind of problems. 

Different application in the last few years have considered 

the use of a mobile platform for sensors instead a classical 

static sensor network, where a drone is a suitable platform to 

be equipped with gas sensors for environmental and 

monitoring tasks. Several other applications demonstrated that 

drones are suitable to be equipped with gas sensors for 

environmental monitoring [49-51]. As a proof of concept, 

recent study such as [3] demonstrated the use of nano-drone 

for indoor gas source localization and mapping. 

A general and powerful extension in this research field 

suggested in different studies as a potential future 

development, is the adaptation of methodologies for the third 

spatial dimension and for augmenting the solution to a 

multirobot collaboration scheme. These improvements in 

many cases may help to reduce the time needed to cover a large 

area and improve at the same time the quality of the sampled 

data when a low-cost multisensory system is used [24-38]. 

 

3.4 Swarm robots  

 

Swarm robots is a very active area of research dealing with 

a different number of robots usually in homogeneous or 

heterogenous formation [56-58]. The main approaches 

adopted in this field take inspiration from biological systems 

such as ants, bees and birds, to develop useful and powerful 

behaviours in multirobot applications. In these methodologies, 

individual robots have minimal capabilities and ability to solve 

atomic tasks on their own. When grouped, they tend to 

ensemble together to make a global intelligence and complex 

behaviour to achieve solutions unreachable from an individual 

robot. Solutions with swarm of robots usually improve the 

capability of the whole system and address issues of scalability 

of the system in terms of interchangeability and scale.  

In general, the two main methodologies used in this field are 

Collective Swarm System where each team member has its 

own control law that execute coherently with other team 

members to reach the goal, and Cooperative System, where 

explicit coordination between members is needed for coherent 
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team behaviours. 

In a Collective Swarm System, a team of large and usually 

homogeneous mobile robots generates a coherent behaviour 

with a minimum communication, although each robot acts 

according to its own control laws. On the other hand, a 

Cooperative System requires a more explicit communication, 

where knowledge of the state, actions and behaviours of the 

other robots are fundamentals information to reach the goal for 

the team. In this case, a heterogeneity in the robot team 

members is allowed thanks to the information that the 

members exchange at the cost of a more scalable solution. In 

fact, if in the swarm system a scalable solution is easily 

deployable by directly change one member with another, 

heterogeneity implies that robots in the system vary 

significantly in their capability and usually in the architecture 

or type.  

When different kinds of robots interact to perform some 

collaborative tasks, a complex decision strategy needs to 

consider which members perform which tasks based on its 

own capability. From a set of simple system and simple rules 

for interaction and communication, a final task in the research 

of Swarm robotics is the deployment of learning algorithms to 

design adaptive cooperative multirobot solution and dynamic 

real-time adaptation paradigm. 

 

 

4. ROBOTIC OLFACTORY: DRONE SWARM 

FRAMEWORK  

 

In recent years, there has been a growing interest in the 

Robot Olfactory field. Relevant improvements in the chemical 

sensors and robotics technologies, such as in data analysis 

algorithms, has increased the research in this field. Moreover, 

the miniaturization of chemical sensors and the improved 

performances of drone platforms - together with a decrease of 

their cost - prospect a wide range of practical applications such 

as an intelligent mobile sensors network.  

In the context of CBRNe scenario or CBRNe event, a fast 

response with a high degree of mobility and efficiency in the 

identification tasks is a crucial aspect to improve in a mobile 

sensor network. The algorithms proposed to address tasks such 

as gas localization, mapping and source declaration and 

identification have a great potential when combined with 

mobile platforms such as UAVs. However, it is also a young 

field of research, and most of the work still needs a further 

improvement in terms of validation and optimization. For 

example, most of the plume tracking algorithms consider only 

a 2D dispersion model whereas a 3D dispersion plume model 

combined with a drone platform needs to consider different 

aspects such as the approaching phase to the edge of the plume 

and interferences from the propeller system. 

There are several constraints and limitations to consider in 

the development of this type of research such as different 

sources of noise and interferences due to aleatory nature of the 

environment, flow variations both in time and space, and the 

uncontrolled outdoor conditions. Here, a combined and 

scalable solution, both for the sensors and the mobile platform 

configuration and displacement, is proposed to solve some of 

these issues.  

A homogeneous displacement of a swarm of drones could 

reduce the time needed for the exploration based on well-

established algorithms for plume finding, and it may allow to 

reduce the cost of the whole system if a low-cost sensor and 

mini and low-cost drone are involved in the application. This 

configuration could increase the number of sampling points in 

a large area and improve the velocity of concentration 

mapping of a dispersion of chemical substance. A 

heterogeneous displacement of a drone swarm, where each 

member has its own specific role and sensor, could reduce the 

effort needed to identify the released substances. For example, 

whereas a low-cost drone equipped with a low-cost sensor is 

useful for fast exploration and plume tracking, a more specific 

sensor or a specific combination of low-cost sensors is 

required for the identification of the chemical compound. 

Moreover, real-time data analysis algorithms could be 

improved only on a more powerful platform. This usually 

implies the use of a different class of drones with different 

capabilities and payloads, and obviously an increase in the cost 

of the whole sensor network (in Figure 5 schematics of 

proposed application based on swarm and sensors 

configurations).  

 

 
 

Figure 5. Schematics of a scalable solution in terms of 

different kinds of drone platforms, sensor configurations, and 

roles in the application  

 

To optimize the application in terms of the hardware and 

operational time, a more reliable solution is to use small drones 

for a fast exploration phase and a more specific sensor 

(installed on a heavier drone) for identification and data 

analysis of the substances. If deployed at the same time, the 

data from the exploration phase could optimize the sampling 

location where specific sensors will be deployed with the final 

aim to mitigate problems such as plume intermittency, 

turbulent flow and flow variation due to propeller vortex.  

We propose a new pathway to augment a previously defined 

solution for the Gas Source Localization and Mapping with a 

drone by using a “dynamic displacement of drone swarm”. 

Specifically, this means optimizing the configurations of the 

chemical sensing application in terms of drone swarm 

displacement in the area such as in terms of specialization of 

sensors type on board of each drone and in terms of sensors 

network to maximize the operational time and reduce the time 

and space required in each phase of the chemical sensing 

application.  

The proposed approach is based on the consideration of two 

fundamental constraints when combining chemical sensor 

with a mobile platform such as a drone. From the point of view 

of chemical sensor data acquisition, whereas a powerful sensor 

for gas identification exists and are commercially available 

such as gas chromatography, these devices are expensive, 

heavy and require high energy consumptions. A more reliable 

solution usually deployed in the Robot Olfaction research is to 

use a combination of a more low-cost sensor and optimize the 

sampling of these sensors with Machine Learning techniques. 
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On the other hand, the use of different drones in a specific 

formation and collaboration based on their capability, payload, 

operational time, and propeller vortex, could optimize the 

whole application in terms of the resources needed to 

accomplish each sub-tasks and in terms of the time required to 

find the focus area. Moreover, such approach could also 

improve the accuracy of the application when a specific drone 

is deployed only in an optimal concentration to well identify 

the volatile compounds. 

Due to a complexity needed in this kind of application such 

as control, perception, communication and behaviour 

coordination, a preliminary study of this paradigm involves a 

simulation platform. Many platforms for robotic field have 

been yet deployed and used in the research and industrial 

application. One of the most promising, useful, and complete 

is the ROS (Robot Operating System [59]) framework. This 

platform embedded all the basic feature needed in the control 

of robotic platform such as library and tools for navigation and 

simulation (Stage for 2D and Gazebo for 3D simulation). This 

framework allows the simulation of different aspect of a 

robotic platform such as kinematic of robotic manipulator, 

control of wheeled mobile robots, navigation, path planning, 

slam.  

Specifically, based on the goal of the proposed research, a 

simulation of a gas release detected by means of sensors such 

as MOXs and PIDs has been already implemented in a 

GADEN project [60]. In this project a “simulation framework 

was developed under the widely used Robot Operating System 

(ROS) to enable the validation of robotics systems and gas 

sensing algorithms under realistic environments”. Fluid 

dynamics and filament dispersion are modelled in flow and gas 

dispersion models created with a CFD library (OpenFoam in 

the project). Moreover, different gas sensors such as 

Anemometer, MOXs and PIDs are simulated for gas sampling. 

The implementation of the GADEN framework considers only 

a wheeled mobile robot and a gas source localization algorithm. 

Aimed at developing research in the multipurpose use of drone 

swarms specifically in CBRNe scenarios, a ROS platform is a 

good starting point for the development of a whole framework. 

Simulation platforms such as ROS are a preliminary starting 

point to standardize and safely develop a more complex 

system that take into account both drone sensors simulation 

and swarm control for different types of drones. This solution 

allows to safely carry out researches in the drone field and to 

test algorithms for swarm drones and control. Moreover, the 

framework allows to define a standard environment to test 

proposed solutions and rapidly configure different approaches 

such as different plume finding, tracking and mapping 

algorithms based on the exchanged information between the 

drones. Finally, the implemented algorithms are easily 

deployable in a real drone application using directly a ROS 

platform for control and coordinate real robots. Thus, a 

simulated algorithm could be easily evaluated in both 

simulated and real applications with only little effort for the 

effective on-board deployment. Experimental tests in real 

scenarios can also be quickly brought forward to compare and 

validate simulated results. 

After the first integration of the drone swarm control and 

the gas simulation, an assessment of the swarm configuration 

and different behaviours could be performed to investigate the 

performance in indoor and outdoor environments (Figure 6). 

Several different paradigms for multirobot team architectures 

are possible, such as centralized, hierarchical, decentralized, 

and hybrid. Evaluation of such control paradigms with 

constraints and information collected from plume finding, 

tracking and mapping algorithms will be used to optimize the 

whole chemical sensing application in different scenarios. 

Interactions of robots and how the group behaviour will be 

generated from the control architectures both in the individual 

robots and in the team or swarm configuration could be 

evaluated, with the aim to optimize each task in the gas source 

localization, plume tracking and source identification. 

 

 
 

Figure 6. General steps for framework development, swarm architecture evaluation and assessment of the generated model in 

simulation and experimental tests 
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5. CONCLUSIONS AND FUTURE DEVELOPMENTS 

 

Chemical plume tracking and mapping via swarm robots are 

considered very challenging tasks. Different environmental 

conditions such as wind speed, concentration of the chemical 

agent, dispersion shape due to different volatile compounds, 

variable dispersion flow (intermittency), turbulent fluid flow 

and drone interactions are all components that in a real 

environment heavily determine the success of a chemical 

sensing application.  

The idea to integrate a swarm of heterogeneous or 

homogeneous drones having different performances in terms 

of sensors capability, combined with the optimization of their 

behaviour, significantly reduce the time and cost of tracking, 

localization and identification of a gas plume dispersion. 

Moreover, the evaluation of different swarm behaviours and 

performances could help to optimize the application success in 

different scenarios, going from closed to open environments.  

In order to apply swarm robots in plume tracking and 

mapping, some issues need to be addressed such as the model 

of the plume, the turbulence of the chemical plume due to 

different wind directions and speed, and the vortex generated 

from the propeller of the drones. Such factors need to be 

considered for the development of practical algorithms and to 

optimize the performance of the whole framework. Swarm 

robotics kinematics, dynamics and design need to be grounded 

and assessed in scenarios that consider different chemical 

plume tracking algorithms with the aim of optimizing the 

performances of the whole system in terms of scalability, 

control and operational time. Finally, once different 

configurations of drone formations and sensors are simulated 

and evaluated, experimental tests in a real environment could 

assess the validity of the achieved solutions. Comparison 

between simulated results, environmental tests and well-

established algorithms found in literature shall allow to 

investigate the reliability and flexibility of a swam of drones 

and the definition of a set of optimal parameters for each 

interesting scenario. 

Future development and research will focus on simulating 

the conditions and the fluid dynamic constraints which may 

impact on sensor data acquisition and on swarm control 

ecosystem based on chemical plume tracking algorithms. 

Moreover, field tests may also be carried out to control the 

formation of swarm robots, to trace chemical plumes, and to 

build a dispersion map for indoor and outdoor environments. 

Future investigation involves the use of the Machine Learning 

for data analysis of sensors data and Artificial Intelligence for 

swarm robotics control. 
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