537 research outputs found

    Un cas de longévité exceptionnelle chez le chiroptère Rhinolophus ferrumequinum

    Get PDF
    Two more longevity records of wild male Rhinolophus ferruméquinum are reported : 25.5 and 29.5 year

    First results from stimulation assessment and monitoring of the 426°C geothermal well RN-15/IDDP-2 (H2020-DEEPEGS project)

    Get PDF
    The RN-15/IDDP-2 deep geothermal well of the DEEPEGS EU project on the Mid-Atlantic ridge at Reykjanes, Iceland, is a unique site for geothermal research. With a bottom hole temperature of approximately 426°C, it is one of the hottest geothermal wells ever drilled aiming for fluids at supercritical condition. Consequently, down-hole measurements are reliable to a depth of about 3.5 km, only. Pressure and temperature condition in the reservoir can be inferred using the newly developed wellbore simulator WellboreKit. Due to complete fluid loss, the well has been drilled at flow rates that reach hydraulic stimulation condition. After the drilling, the well was stimulated further by applying different concepts ranging from high flow rate hydraulic stimulation to long-term but low flow rate hydraulic stimulation to increase the reservoir performance at around 4.6 km depth. Thermo-hydro-mechanically coupled numerical modelling was performed to predict the performance response and thus, develop a well stimulation schedule. Processes related to drilling and stimulation are monitored using seismic and magnetotelluric methods to characterize and understand the processes ongoing during injection

    Effects of habitat and land use on breeding season density of male Asian Houbara Chlamydotis macqueenii

    Get PDF
    Landscape-scale habitat and land-use influences on Asian Houbara Chlamydotis macqueenii (IUCN Vulnerable) remain unstudied, while estimating numbers of this cryptic, low-density, over-hunted species is challenging. In spring 2013, male houbara were recorded at 231 point counts, conducted twice, across a gradient of sheep density and shrub assemblages within 14,300 km² of the Kyzylkum Desert, Uzbekistan. Four sets of models related male abundance to: (1) vegetation structure (shrub height and substrate); (2) shrub assemblage; (3) shrub species composition (multidimensional scaling); (4) remote-sensed derived land-cover (GLOBCOVER, 4 variables). Each set also incorporated measures of landscape rugosity and sheep density. For each set, multi-model inference was applied to generalised linear mixed models of visit-specific counts that included important detectability covariates and point ID as a random effect. Vegetation structure received strongest support, followed by shrub species composition and shrub assemblage, with weakest support for the GLOBCOVER model set. Male houbara numbers were greater with lower mean shrub height, more gravel and flatter surfaces, but were unaffected by sheep density. Male density (mean 0.14 km-2, 95% CI, 0.12‒0.15) estimated by distance analysis differed substantially among shrub assemblages, being highest in vegetation dominated by Salsola rigida (0.22 [CI, 0.20‒0.25]), high in areas of S. arbuscula and Astragalus (0.14 [CI, 0.13‒0.16] and 0.15 [CI, 0.14‒0.17] respectively), lower (0.09 [CI, 0.08‒0.10]) in Artemisia and lowest (0.04 [CI, 0.04‒0.05]) in Calligonum. The study area was estimated to hold 1,824 males (CI: 1,645‒2,030). The spatial distribution of relative male houbara abundance, predicted from vegetation structure models, had the strongest correspondence with observed numbers in both model-calibration and the subsequent year’s data. We found no effect of pastoralism on male distribution but potential effects on nesting females are unknown. Density differences among shrub communities suggest extrapolation to estimate country- or range-wide population size must take account of vegetation composition

    The effect of magnetic anisotropy on the spin configurations of patterned La0.7Sr0.3MnO3 elements

    Get PDF
    International audienceWe study the effect of magnetocrystalline anisotropy on the magnetic configurations of La0:7Sr0:3MnO3 bar and triangle elements using photoemission electron microscopy imaging. The dominant remanent state is a low energy flux-closure state for both thin (15 nm) and thick (50 nm) elements. The magnetocrystalline anisotropy, which competes with the dipolar energy, causes a strong modification of the spin configuration in the thin elements, depending on the shape, size and orientation of the structures. We investigate the magnetic switching processes and observe in triangular shaped elements a displacement of the vortex core along the easy axis for an external magnetic field applied close to the hard axis, which is well reproduced by micromagnetic simulations

    Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    Get PDF
    Purpose. To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods. Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg ®). Results. Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30 % (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion. The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. KEY WORDS: drug release; enzymatic degradation; meta-tetra(hydroxyphenyl)chlorin (mTHPC); photodynamic therapy (PDT); polymeric micelles

    Efficient algorithms for reconstructing gene content by co-evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study we demonstrated that co-evolutionary information can be utilized for improving the accuracy of ancestral gene content reconstruction. To this end, we defined a new computational problem, the Ancestral Co-Evolutionary (ACE) problem, and developed algorithms for solving it.</p> <p>Results</p> <p>In the current paper we generalize our previous study in various ways. First, we describe new efficient computational approaches for solving the ACE problem. The new approaches are based on reductions to classical methods such as linear programming relaxation, quadratic programming, and min-cut. Second, we report new computational hardness results related to the ACE, including practical cases where it can be solved in polynomial time.</p> <p>Third, we generalize the ACE problem and demonstrate how our approach can be used for inferring parts of the genomes of <it>non-ancestral</it> organisms. To this end, we describe a heuristic for finding the portion of the genome ('dominant set’) that can be used to reconstruct the rest of the genome with the lowest error rate. This heuristic utilizes both evolutionary information and co-evolutionary information.</p> <p>We implemented these algorithms on a large input of the ACE problem (95 unicellular organisms, 4,873 protein families, and 10, 576 of co-evolutionary relations), demonstrating that some of these algorithms can outperform the algorithm used in our previous study. In addition, we show that based on our approach a ’dominant set’ cab be used reconstruct a major fraction of a genome (up to 79%) with relatively low error-rate (<it>e.g.</it> 0.11). We find that the ’dominant set’ tends to include metabolic and regulatory genes, with high evolutionary rate, and low protein abundance and number of protein-protein interactions.</p> <p>Conclusions</p> <p>The <it>ACE</it> problem can be efficiently extended for inferring the genomes of organisms that exist today. In addition, it may be solved in polynomial time in many practical cases. Metabolic and regulatory genes were found to be the most important groups of genes necessary for reconstructing gene content of an organism based on other related genomes.</p
    corecore