5 research outputs found

    J Fr Ophtalmol

    No full text
    Introduction : Les implants corticoïdes à libération prolongée sont injectés dans la cavité vitréenne à l’aide de stylos préchargés. L’implant de fluocinolone (FAc) se caractérise par une taille environ deux fois inférieure à celle de celui de dexaméthasone (Dex-I). Il est également simplement « déposé » dans la base du vitré et non propulsé dans la cavité vitréenne comme le Dex-I. Le contrôle de son bon positionnement après injection est de ce fait très difficile en ophtalmoscopie indirecte. Notre étude a pour objectif de comparer les performances des différents examens disponibles pour confirmer la présence dans la cavité vitréenne du FAc après injection. Méthodes : Douze yeux de 12 patients consécutifs ont été inclus dans une étude rétrospective monocentrique, observationnelle, réalisée au CHU de Bordeaux. Les patients ont tous bénéficié de l’injection du FAc après dilatation pupillaire, puis d’un fond d’œil, d’une rétinographie grand-champ (Clarus®, Carl-Zeiss-Meditec, Dublin, CA, USA) et d’une rétinographie ultra-grand-champ (California®, Optos, Edinbourg, Royaume-Uni). Sept jours après, une échographie en mode-B (10 MHz, AVISO, Quantel-medical, France) et une échographie UBM (50 MHz, AVISO, Quantel-medical, France) ont été réalisées. Résultats : Le fond d’œil et la rétinographie grand-champ ont permis d’observer 4/12 implants (33,3 %). La rétinophotographie ultra-grand-champ a permis de détecter 6/12 implants (50 %). Tous les implants vus au fond d’œil et en rétinographie grand-champ ont été également visualisés avec l’ultra-grand-champ. L’échographie en mode-B a mis en évidence 5/12 implants (41,6 %) et l’UBM 9/12 implants (75 %). Enfin, un implant a migré en chambre antérieure et a pu être mis en évidence dans l’angle irido-cornéen en gonioscopie. Conclusion : La confirmation objective du bon positionnement de l’implant FAc est essentielle. S’il n’est pas visible au simple FO et à l’examen du segment antérieur, la rétinographie ultra-grand-champ puis l’échographie UBM apparaissent comme étant les deux meilleures modalités d’imagerie.INTRODUCTION: Sustained-release corticosteroid implants are injected into the vitreous cavity using preloaded pens. The fluocinolone (FAc) implant is approximately half the size of the dexamethasone implant (Dex-I). It is simply introduced in the vitreous base rather than propelled into the vitreous cavity as is Dex-I. Verification of its positioning after injection is thus difficult by indirect ophthalmoscopy. The goal of our study is to compare the performance of available clinical and imaging tools to confirm the presence of the FAc in the vitreous cavity following injection. METHODS: Twelve eyes of 12 consecutive patients were included in a retrospective, single-center, observational study carried out at the Bordeaux University Hospital, France. All patients were injected with the FAc after pupil dilation, and presence of the implant was immediately checked by indirect biomicroscopy, wide-field retinography (Clarus®, Carl-Zeiss-Meditec, Dublin, CA, USA) and ultra-wide-field retinography (California®, Optos, Edinburgh, United-Kingdom). Seven days later, a B-mode ultrasonography (10MHz, AVISO, Quantel-medical, France) and an UBM ultrasonography (50MHz, AVISO, Quantel-medical, France) were performed. RESULTS: Indirect biomicroscopy and wide-field retinography detected 4/12 implants (33.3%). Ultra-wide-field retinophotography detected 6/12 implants (50%). All the implants seen using indirect biomicroscopy and wide-field retinography were also visualized with ultra-wide-field. B-mode ultrasonography showed 5/12 implants (41.6%) and UBM 9/12 implants (75%). Finally, one implant dislocated into the anterior chamber and was seen in the iridocorneal angle on gonioscopy. CONCLUSION: Objective confirmation of the proper positioning of the FAc implant in the vitreous cavity is mandatory. If both indirect ophthalmoscopy and anterior examination fail to detect it, ultra-wide field retinography along with UBM ultrasonography, if necessary, appear to be the two best imaging modalities to use

    The European Eye Epidemiology Spectral-domain Optical Coherence Tomography Classification of Macular Diseases for Epidemiological Studies

    No full text
    PURPOSE: The aim of the European Eye Epidemiology (E3) consortium was to develop a spectral-domain optical coherence tomography (SD-OCT)-based classification for macular diseases to standardize epidemiological studies. METHODS: A European panel of vitreoretinal disease experts and epidemiologists belonging to the E3 consortium was assembled to define a classification for SD-OCT imaging of the macula. A series of meeting was organized, to develop, test and finalize the classification. First, grading methods used by the different research groups were presented and discussed, and a first version of classification was proposed. This first version was then tested on a set of 50 SD-OCT images in the Bordeaux and Rotterdam centres. Agreements were analysed and discussed with the panel of experts and a final version of the classification was produced. RESULTS: Definitions and classifications are proposed for the structure assessment of the vitreomacular interface (visibility of vitreous interface, vitreomacular adhesion, vitreomacular traction, epiretinal membrane, full-thickness macular hole, lamellar macular hole, macular pseudo-hole) and of the retina (retinoschisis, drusen, pigment epithelium detachment, hyper-reflective clumps, retinal pigment epithelium atrophy, intraretinal cystoid spaces, intraretinal tubular changes, subretinal fluid, subretinal material). Classifications according to size and location are defined. Illustrations of each item are provided, as well as the grading form. CONCLUSION: The E3 SD-OCT classification has been developed to harmonize epidemiological studies. This homogenization will allow comparing and sharing data collection between European and international studies

    Acta Ophthalmol

    Get PDF
    PURPOSE: The aim of the European Eye Epidemiology (E3) consortium was to develop a spectral-domain optical coherence tomography (SD-OCT)-based classification for macular diseases to standardize epidemiological studies. METHODS: A European panel of vitreoretinal disease experts and epidemiologists belonging to the E3 consortium was assembled to define a classification for SD-OCT imaging of the macula. A series of meeting was organized, to develop, test and finalize the classification. First, grading methods used by the different research groups were presented and discussed, and a first version of classification was proposed. This first version was then tested on a set of 50 SD-OCT images in the Bordeaux and Rotterdam centres. Agreements were analysed and discussed with the panel of experts and a final version of the classification was produced. RESULTS: Definitions and classifications are proposed for the structure assessment of the vitreomacular interface (visibility of vitreous interface, vitreomacular adhesion, vitreomacular traction, epiretinal membrane, full-thickness macular hole, lamellar macular hole, macular pseudo-hole) and of the retina (retinoschisis, drusen, pigment epithelium detachment, hyper-reflective clumps, retinal pigment epithelium atrophy, intraretinal cystoid spaces, intraretinal tubular changes, subretinal fluid, subretinal material). Classifications according to size and location are defined. Illustrations of each item are provided, as well as the grading form. CONCLUSION: The E3 SD-OCT classification has been developed to harmonize epidemiological studies. This homogenization will allow comparing and sharing data collection between European and international studies
    corecore