256 research outputs found

    Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea

    Get PDF
    Neural development of echinoderms has always been difficult to interpret, as larval neurons degenerate at metamorphosis and a tripartite nervous system differentiates in the adult. Despite their key phylogenetic position as basal echinoderms, crinoids have been scarcely studied in developmental research. However, since they are the only extant echinoderms retaining the ancestral body plan of the group, crinoids are extremely valuable models to clarify neural evolution in deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never been described in detail. Thus, we characterized the nervous system of both these developmental stages by means of immunohistochemistry and, for the first time, in situ hybridization techniques. The results confirmed previous descriptions of doliolaria morphology and revealed that the larval apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are localized under the adhesive pit. This suggested that different larval activities (e.g., attachment and metamorphosis) are under the control of different neural populations. In pentacrinoids, the analysis showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared more composite, displaying different neural populations. The expression of three neural-related microRNAs was described for the first time, suggesting that these are evolutionarily conserved also in basal echinoderms. Overall, our results set the stage for future investigations that will reveal new information on echinoderm evo-devo neurobiology

    Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna

    Get PDF
    Microplastic (\u3bcPs) contamination represents a dramatic environmental problem threatening both aquatic and terrestrial organisms. Although several studies have highlighted the presence of \u3bcPs in aquatic environments, the information regarding their toxicity towards organisms is still scant. Moreover, most of the ecotoxicological studies of \u3bcPs have focused on marine organisms, largely neglecting the effects on freshwater species. The present study aimed at exploring the effects caused by 21-days exposure to three concentrations (0.125, 1.25 and 12.5 \u3bcg/mL) of two differently sized polystyrene microplastics (P\u3bcPs; 1 and 10 \u3bcm) to the Cladoceran Daphnia magna. The ingestion/egestion capability of daphnids (<24 h) and adults, the changes in individual growth and behavior, in terms of changes in swimming activity, phototactic behavior and reproduction, were investigated. Both particles filled the digestive tract of daphnids and adults within 24 h of exposure at all the tested concentrations. Ingested P\u3bcPs remained in the digestive tract even after 96 h in a clean medium. For both particles, an overall increase in body size of adults was noted at the end of the exposure to the highest tested concentrations, accompanied by a significant increase in swimming activity, in terms of distance moved and swimming velocity, and by an alteration of the phototactic behavior. A significant increase in the mean number of offspring after the exposure to the highest P\u3bcPs concentrations of different size was recorded. Polystyrene \u3bcPs can affect behavioral traits of D. magna leading to potentially harmful consequences on population dynamics of this zooplanktonic species

    No correlation among expressed emotion, anxiety, stress and weight loss in patients with overweight and obesity

    Get PDF
    The onset of some types of obesity may correlate with specific familial relational patterns, and expressed emotion (EE). The aim of this study is to address the current gap in the literature about EE and obesity, assessing EE in a sample of patients with overweight or obesity and their relatives. A further objective is to assess patients' weight loss, patients' and relatives' anxiety, perceived stress and their possible correlation with EE and diet compliance. A total of 220 patients with overweight or obesity and 126 relatives were recruited. Patients' baseline body mass index (BMI) was negatively correlated with educational level, but we failed to find any correlation between BMI and the other variables assessed. We found a positive correlation between EE median and stressful life events, as well as between median EE and state and trait anxiety. Our results seem to suggest that other factors than the psychological ones we investigated may play a role in treatment adherence and outcome in patients with overweight and obesity

    Discovery and functional characterization of neuropeptides in crinoid echinoderms.

    Get PDF
    Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms

    Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana

    Get PDF
    Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited

    Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability

    Get PDF
    The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere

    HmuY Haemophore and Gingipain Proteases Constitute a Unique Syntrophic System of Haem Acquisition by Porphyromonas gingivalis

    Get PDF
    Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin
    • …
    corecore