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Graphical Abstract  text 

Crinoids are basal echinoderms, developing through a swimming doliolaria larva and a post-

metamorphic pentacrinoid. We characterized the nervous system of both these stages. Our results 

revealed the presence of a highly composite nervous system, suggesting that different 

larval/juvenile activities are under the control of different neural populations. 
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Abstract 19 

Neural development of crinoids, and more in general, of echinoderms have always been elusive, 20 

as larval neurons degenerate and a tripartite nervous system differentiates in the adult. Despite 21 

their key phylogenetic position as basal echinoderms, crinoids has been scarcely exploited in 22 

developmental research. However, they are the only extant echinoderms retaining the ancestral 23 

body plan of the group and studies on these models are precious to clarify neural evolution in 24 

deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its 25 

development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve 26 

plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never 27 

been described in detail. Thus, we characterized the nervous system of both these developmental 28 

stages by means of immunolocalization and, for the first time, in situ hybridization techniques. 29 

The results confirmed previous descriptions of doliolaria morphology and revealed that the larval 30 

apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are 31 

localized under the adhesive pit. This suggested that different larval activities (e.g. attachment and 32 

metamorphosis) are under the control of different neural populations. In the pentacrinoid, analyses 33 

showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared 34 
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more composite, displaying different neural populations. The expression of three neural-related 1 

microRNAs was described for the first time, suggesting that these are evolutionary conserved also 2 

in basal echinoderms. Overall, our results set the stages for future investigations that will allow to 3 

complete the intriguing puzzle of echinoderm evo-devo neurobiology. 4 

 5 

Keywords: crinoids, nervous system, serotonin, GABA, microRNA 6 

7 

Page 4 of 29

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

 3

1. Introduction 1 

Crinoids are invertebrate deuterostomes and the only living representatives of Pelmatozoa. They are 2 

recognized as the sister group of the Eleutherozoa, a taxon including the other four traditional 3 

echinoderm classes (echinoids, holothuroids, asteroids and brittle stars) (Reich, Dunn, Akasaka, & 4 

Wessel, 2015; Telford et al., 2014). They are usually divided into the free living feather stars (or 5 

comatulids) and the fixed sea lilies, a distinction that, based on recent molecular analyses, 6 

corresponds to two different ways of life rather than a true taxonomic relationship (Hemery, 7 

Michel, Améziane, & Eléaume, 2013; Rouse et al., 2013). 8 

Crinoids and echinoderms, in general, display a number of peculiar anatomical and physiological 9 

features, among which the nervous system is one of the most enigmatic. In the adult, this has been 10 

traditionally described as a tripartite system whose components differ for anatomical localization 11 

and function: a basi-epithelial and sensory ectoneural system, a sub-epithelial and motor hyponeural 12 

system and an inner entoneural system (Cobb, 1987). In Eleutherozoa, the ecto and hyponeural 13 

components are dominant whereas in crinoids the entoneural system is the main part of the adult 14 

nervous system, forming well-developed brachial nerves (Candia Carnevali, Galassi, Bonasoro, 15 

Patruno, & Thorndyke, 2001; Candia Carnevali & Bonasoro, 2001; Heinzeller & Welsch, 1994). 16 

The developmental origin of these sub-systems has been under major debate, particularly that 17 

related to the hyponeural components (Heinzeller & Welsch, 1994). Larval nervous system 18 

generally consists of a main anterior structure (apical organ) and ciliary band-associated neurons 19 

and it has little if any relationship with adult nervous system as it is completely lost at 20 

metamorphosis. Adult neural structures are therefore developed ex-novo from rudiment tissues 21 

(Burke, 2011). 22 

Our present understanding of echinoderm neural development is mainly derived from studies on the 23 

Eleutherozoa (Byrne, Nakajima, Chee, & Burke, 2007; Cary & Hinman, 2017; Hirokawa, Komatsu, 24 

& Nakajima, 2008; Katow et al., 2010; Nakano, Murabe, Amemiya, & Nakajima, 2006) and less 25 

information is available on crinoid neural development. Indeed, despite their key phylogenetic 26 

position, crinoids have been scarcely exploited in both developmental and evolutionary studies and 27 

only recently interest in crinoid developmental processes has aroused (Amemiya et al., 2015; 28 

Comeau, Bishop, & Cameron, 2017; Nakano, Nakajima, & Amemiya, 2009; Omori, Akasaka, 29 

Kurokawa, & Amemiya, 2011). 30 

Most crinoids develop through two main post-embryonic forms: a swimming doliolaria larva and a 31 

stalked pentacrinoid juvenile. Doliolaria is a lecithotrophic larva found in holothurians and 32 

ophiuroids as well (McEdward & Miner, 2001; Nakano et al., 2006). Through metamorphosis 33 

doliolaria becomes a sessile filter-feeding pentacrinoid, which grows into the adult form in sea 34 
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lilies, whereas in feather stars the juvenile detaches from the stalk after several months, becoming a 1 

free-living adult (Barbaglio et al., 2012; Mladenov & Chia, 1983). Nervous system anatomy of 2 

doliolaria larvae has been reported in few species (Barbaglio et al., 2012; Nakano et al., 2009) 3 

whereas pentacrinoid neural structures have never been described in detail. As nervous system 4 

organization and development are fundamental aspects of animal body plan (Byrne et al., 2007; 5 

Nakajima, Kaneko, Murray, & Burke, 2004), the scant data available in crinoids strongly reduce our 6 

possibilities to understand the phylogenetic origin of echinoderm nervous system. Difficulties in 7 

larva collection and the lack of effective protocols for molecular investigations have strongly 8 

limited the potentiality of this model. Crinoids, however, are the only extant echinoderms retaining 9 

the ancestral body plan of the group (Guensburg & Sprinkle, 2009; Paul & Smith, 1984). 10 

Thus, in the present study, we characterised the nervous system of doliolaria and pentacrinoid 11 

stages of the feather star Antedon mediterranea, a species endemic to the Mediterranean Sea. This 12 

comatulid has been highly exploited in regeneration studies (Candia Carnevali et al., 2001; Candia 13 

Carnevali & Bonasoro, 2001; Di Benedetto et al., 2014; Sugni et al., 2010) whereas its development 14 

has received less attention. After spawning, A. mediterranea females keep their embryos attached to 15 

their genital pinnules until, 3-4 days post fertilization, the swimming doliolariae hatch. Doliolaria 16 

larva displays a distinctive barrel-like shape with two ciliated grooves: the anterior adhesive pit and 17 

the ventrally located vestibulum. Moreover, its body is characterised by five transverse ciliary 18 

bands and, anteriorly, by a long tuft that emerges from an apical pit. After a few days, doliolaria 19 

settles on a proper substrate and undergoes metamorphosis. Through a transient cystidean stage, the 20 

larva reaches the pentacrinoid stage. This juvenile consists of a cup-like calyx attached to the 21 

substrate by a long stalk. Tube feet progressively emerge from the calyx opening, surrounding the 22 

mouth and already bearing several thin processes called papillae (Barbaglio et al., 2012). 23 

Considering the emerging role of crinoids in evolutionary and developmental studies, we 24 

investigated neural organization of both doliolariae and pentacrinoids by mean of microscopy, 25 

immunohistochemistry and, for the first time, in situ hybridization technique. The type and 26 

distribution of neural populations were described and their molecular markers explored through the 27 

expression of three nervous system-enriched microRNAs (miRNAs; miR-7, miR-124 and miR-28 

184), a class of small non-coding RNAs highly conserved among metazoans. Overall, our results 29 

provide precious data about crinoid neuroanatomy and set the stage for further investigations that 30 

will help to complete the intriguing puzzle of echinoderm neurobiology. 31 

 32 

 33 

 34 
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2. Materials and Methods 1 

2.1. Animal maintenance and sample collection 2 

Adults of A. mediterranea (Fig. 1 A) were collected in winter 2017 at Le Grazie (La Spezia Gulf, 3 

Ligurian Sea, Italy). Animals were immediately transferred to the laboratory, where they were 4 

maintained in aquaria filled with artificial sea water (ASW) and provided with close multi-5 

circulation system as well as mechanical, chemical and biological filters. ASW was prepared by 6 

mixing commercial aquarium salt (Instant Ocean®, Aquarium System) with partially deionized 7 

water in order to reach the Mediterranean Sea salinity (37-38‰). Temperature was set at 17±1°C 8 

and photoperiod was fixed at 16h:8h (dark:light), mimicking natural conditions. Aquaria physical 9 

(temperature, salinity, pH) and chemical (nitrite and nitrate levels) parameters were regularly 10 

checked and promptly adjusted if necessary. Five days per week each adult individual was fed with 11 

artificial feed for seawater filter-feeding animals (Clam and Filter Feeder, H2Ocean). Since A. 12 

mediterranea females keep their embryos attached to their genital pinnules (Fig 1 B and C) until the 13 

swimming doliolariae (Fig. 1 D) hatch, the latter were collected directly from the pinnular surfaces 14 

by gently pipetting water on them to help larvae release. Pentacrinoids (Fig. 1 E) were left to 15 

develop in aquaria: to facilitate doliolaria settlement, plastic grids were put inside the aquaria. 16 

Collection of both dololariae and pentacrinoids was performed under a stereomicroscope. Before 17 

fixation, pentacrinoids were relaxed by a 10-minute incubation in a solution of 3.5% MgCl2 in 18 

ASW. 19 

2.2. Microscopy 20 

Standard methods of light microscopy were employed (Mercurio & Sugni, 2016). Briefly, samples 21 

were pre-fixed with 2% glutaraldehyde in 0.1 M cacodylate buffer and 1.4% NaCl for 2 h. After 22 

overnight washing in the same buffer, samples were post-fixed with 1% OsO4 in 0.1 M cacodylate 23 

buffer. After standard dehydration in ethanol series (25%, 70%, 90% and 100%), samples were 24 

washed in propylene oxide and embedded in Epon-Araldite 812 resin. Semi-thin sections (about 1 25 

µm) were cut with a Reichert-Jung ULTRACUT E using glass knives, stained with crystal violet 26 

and basic fuchsin and then mounted with Eukitt (Bio Optica). Samples were observed under a Leica 27 

light microscope and photographed using a Leica DFC-320 camera and LAS (Leica Application 28 

Suite, Leica) software. 29 

2.3. Immunolocalization 30 

Doliolaria samples were processed for immunofluorescence staining on paraffin sections, as 31 

published whole mount protocols (Barbaglio et al., 2012; Nakano et al., 2009) failed in providing 32 

staining in the innermost structures. Samples were fixed in a solution of 4% paraformaldehyde, 0.5 33 

M NaCl, 0.1 M morpholinopropanesulfonic acid (MOPS fixative; pH 7.5) for 90 minutes, 34 
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dehydrated in ethanol series (30%, 50%, 70%, 90%, 95% and 100%), cleared in xylene and left 1 

overnight in a solution of xylene and paraffin (1:1). Doliolariae were then rinsed in paraffin wax 2 

and embedded. Longitudinal sections (7 µm) were cut with Reichert OmE sledge microtome and 3 

placed in gelatin-coated slides. Then, paraffin was removed through a 20-minutes incubation in 4 

xylene and doliolaria sections progressively rehydrated through ethanol series. After washes in 5 

Phosphate Buffer Saline (PBS) and a pre-incubation in 50% Normal Goat serum (NGS; Sigma-6 

Aldrich) for 1 hour, samples were incubated overnight in a solution of 10% NGS in PBS with the 7 

primary antibody (1:250) at 4°C in a wet chamber. Samples were washed in PBS, treated with 1% 8 

Bovine Serum Albumin (BSA; Sigma-Aldrich) solution for 1 hour and incubated with the 9 

secondary antibody (1:400) for 1 hour at 4°C. Finally, sections were washed with PBS, counter-10 

stained with DAPI to mark the nuclear DNA (Sigma-Aldrich: D9542) mounted with 1,4-11 

diazabicyclo[2,2,2]octane (DABCO, Sigma Italy) plus MOWIOL (Sigma, Italy) and observed using 12 

a Leica SP2 confocal laser scanning microscope (Leica Microsystems, Heidelberg, Germany), 13 

equipped with an argon/krypton laser. Negative controls omitting primary or secondary antibodies 14 

were always performed. 15 

Pentacrinoid samples were processed for whole mount immunofluorescence staining. Samples were 16 

fixed in MOPS fixative for 90 minutes and then washed with 0.1% Tween-20 in Phosphate Buffer 17 

Saline (PBT). Decalcification was achieved by a 2-day incubation in 5% 18 

Ethylenediaminetetraacetic acid (EDTA) at room temperature. Pentacrinoids were permeabilised by 19 

washing them with a solution of 0.25% Triton-X in PBT for 30 minutes and pre-incubated in 50% 20 

NGS for 2 hours. Then, samples were incubated overnight at 4°C in a solution of 10% NGS in PBT 21 

with primary antibody diluted 1:250. After several washings in PBT, pentacrinoids were pre-22 

incubated in 1% BSA in PBT and incubated overnight at 4°C in PBT with the corresponding 23 

secondary antibody diluted 1:400. After PBT washings, samples were mounted with DABCO on 24 

microscope slides and observed using a Leica SP2 confocal laser scanning microscope. Negative 25 

controls were performed omitting the primary or the secondary antibodies.  26 

2.4. Antibody characterization 27 

The following primary antibodies were used: monoclonal anti-ß-tubulin antibody, produced in 28 

mouse (clone 2-28-33; Sigma-Aldrich); anti-serotonin polyclonal antibody, developed in rabbit 29 

(Sigma-Aldrich: S5545); anti-dopamine antibody, produced in rabbit (Sigma-Aldrich: AB122S); 30 

rabbit anti-GABA polyclonal antibody (Sigma-Aldrich: A2052); anti-choline acetyltransferase 31 

(ChAT) polyclonal antibody developed in rabbit (Sigma-Aldrich: AB143). 32 
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Fluorescent secondary antibodies: Alexa Fluor 488 Goat Anti-Mouse IgG Antibody (ThermoFisher: 1 

A-11001), Alexa Fluor 568 Goat Anti-Mouse IgG Antibody (ThermoFisher: A-11004); Alexa Fluor 2 

488 Chicken Anti-Rabbit IgG Antibody (ThermoFisher: A-11008). 3 

2.5. Whole mount in situ hybridization 4 

Expression patterns of three neural-related miRNAs, miR-7, miR-124 and miR-184 plus the muscle 5 

specific miR-133 were investigated by whole mount in situ hybridization in both doliolariae and 6 

pentacrinoids. All steps were performed in RNase free conditions at room temperature unless 7 

otherwise specified. After sample fixation in MOPS fixative, doliolariae were permeabilised with 2 8 

µg/ml Proteinase K in PBT at 37°C for 5 minutes, while pentacrinoid were decalcified for 2 days 9 

with a solution of 5% EDTA. Then both kinds of samples were post-fixed in a solution of 4% 10 

paraformaldehyde in PBT for 1 hour, incubated for 2 hours in the hybridization solution (50% 11 

formamide, 5x SSC, 100 µg/ml yeast RNA, 50 µg/ml, 0.1% Tween-20) at hybridization 12 

temperature. Hybridization was carried out with Dig-labelled LNA probes (Locked Nucleic Acid; 13 

Exiqon, Norway) for 5 days at the hybridization temperature (according to the manufacturer 14 

instructions). Probes were designed based on published sequences (Peterson Kevin, Su, Arnone 15 

Maria, Swalla, & King Benjamin, 2013). After several washes in 50% formamide, 5x SSC, 0.1% 16 

Tween-20 in DEPC-treated water at hybridization temperature and subsequently in PBT, samples 17 

were incubated for 2 hours in blocking buffer solution (1:4 deactivated Sheep Serum in PBT). 18 

Specimens were incubated overnight in a dilution 1:2000 of alkaline phosphatase-conjugated anti-19 

DIG antibody (Roche Diagnostics, Germany) in blocking buffer. The following day, samples were 20 

washed in PBT and incubated in filtered APT buffer (5 M NaCl, 1 M MgCl2, 0.2 M Tris pH 9.5, 21 

0.1% Tween-20) for 15 minutes. Signal detection was obtained in APT buffer containing NBT 22 

(nitrobluetetrazolium salt; Roche Diagnostics) and BCIP (5-bromo-4-chloro-3-indolylphosphate; 23 

Roche Diagnostics) substrates. When colour reaction developed, samples were fixed for 1 hour in 24 

4% paraformaldehyde, mounted on glass slides with 80% glycerol and photographed under a Leica 25 

microscope equipped with Leica DFC-320 Camera. 26 

Finally, doliolariae and pentacrinoids were embedded in Epon 812-Araldite resin and 5 µm thick 27 

sections were cut and stained with diluted basic fuchsin. 28 

 29 

3. Results 30 

3.1. Morphological analysis of doliolaria 31 

The overall anatomy of A. mediterranea doliolaria was described in Barbaglio et al., 2007, here we 32 

recall and detail the main aspects related to the nervous system, to facilitate the comprehension of 33 

immunohistochemical and in situ hybridization results. Histological sections revealed that the 34 
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doliolaria body was covered by a thick epidermis characterized by a conspicuous basiepithelial 1 

nerve plexus which ran along the entire length of the larva. The plexus presented a dense network 2 

of basally located fiber bundles. These bundles were remarkably thicker in the anterior portion of 3 

the larva, particularly under the apical pit and along two lateral longitudinal areas (Fig. 2A and B); 4 

however, it was scarcely developed at the level of the vestibulum roof (Fig. 2 A). In the posterior 5 

region, the nerve plexus became thinner and nervous fibers were hardly detectable in the epithelial 6 

tissues. Larval posterior region was almost completely occupied by the enterohydrocoel cavities, 7 

that will ultimately differentiate into the hydrocoel and enteric sac. From semi-thin sections, it was 8 

not possible to understand whether neural elements of the future visceral and enteric nervous 9 

system were already differentiated at this stage (Fig. 2 A). The rest of the body was composed of 10 

loosely distributed mesenchymal cells filling the spaces between the cavities and the epidermis 11 

(Fig. 2 A and B). 12 

3.2. Immunolocalization of doliolaria nervous system 13 

To better describe the nervous system of doliolaria larvae, nervous fibers were immunolabeled 14 

using a monoclonal antibody against β-tubulin. In whole mount preparations antibodies failed to 15 

penetrate, thus immunolocalization was performed on sections. Labelling was observed in nerve 16 

fibers concentrated in the neural plexus and in neural processes directing toward the body surface. 17 

Fibers were particularly concentrated towards the dorsal apical pit (Fig. 2 C and D). The antibody 18 

also labelled the ciliated cells of the adhesive pit and of the five transverse bands (Fig. 2 C and D). 19 

Neural organization was then explored employing antibodies specific to three neurotransmitters: 20 

serotonin, GABA and dopamine. Serotonin-positive cells were observed at the level of the apical 21 

neural plexus, concentrated in two clusters at each side of the plexus (Fig. 2 E). In sagittal sections, 22 

serotonergic cells localized right under the apical pit and in a thin area between the adhesive pit and 23 

the vestibulum (Fig. 2 F). GABAergic neurons were concentrated in a restricted area of the apical 24 

neural plexus, located in its anterior-most part. These neurons apparently underlay the adhesive pit 25 

between the two clusters of serotonergic cells (Fig. 2 G and H). No dopamine-positive cell was 26 

observed in doliolaria sections. 27 

3.3. Morphological analysis of pentacrinoid 28 

Histological analysis revealed a prominent skeleton underlying the epidermis, both in the calyx and 29 

along the stalk (Fig. 3 A and B). In the oral region, tube feet were covered by thin epidermis and 30 

characterised by hollow central cavities (Fig. 3 C). Papillae were regularly arranged along tube feet 31 

(Fig. 3 B) and cells located at their base sent projections to their tip (Fig. 3 C). In the calyx, the 32 

hydrocoel could be easily recognised as a conspicuous cavity right under the tube feet, bordered by 33 

a thin epithelium (Fig. 3 B). Instead, a thick epithelium of ciliated cells was observed at the level of 34 
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the mouth and continued to the intestine, where cells were filled with heterogeneous vesicles. All 1 

the structures described above were surrounded by the somatocoelic cavities delimited by a thin 2 

monostratified epithelium (Fig. 3 B). At the base of the calyx, a large cluster of neurons was visible, 3 

forming an aboral neural centre, surrounded by thick skeletal plates (Fig. 3 B). This cluster sent 4 

processes towards the oral end and inside the stalk, where a central bundle of nerves could be 5 

recognized, reaching the attachment disk (Fig. 3 D). 6 

3.4. Immunolocalization of pentacrinoid nervous system 7 

Anti-β-tubulin antibody was used to clarify nervous system architecture of pentacrinoids. Neural 8 

processes were detected at the centre of the stalk, running from the base of the calyx to the 9 

attachment disk (Fig. 3 E and F). Inside the calyx, five main nerve branches radiated from the 10 

aboral neural centre; these fibers were interconnected by transversal commissures and directed to 11 

the oral surface. These neural structures form the developing entoneural system. Along the entire 12 

surface of the pentacrinoid, short fibers were also detected as part of the other two components of 13 

the nervous system, the iponeural and ectoneural systems (Fig. 3 C). A strong signal was observed 14 

in each papilla, labelling the central microtubule-rich cell previously described in Heinzeller and 15 

Welsch (1994) (Fig. 3 E-G). Neuronal populations were explored using antibodies specific to 16 

serotonin, GABA, dopamine and choline acetyltransferase. Serotonin-positive cells were observed 17 

lying in a sub-epidermal position (Fig. 3 H). In tube feet, numerous serotonergic neurons created a 18 

dense neural net that did not project into the papillae (Fig. 3 K). Other positive cells were detected 19 

in the sub-epidermal neural plexus of the calyx, concentrated in the oral region, whereas in the 20 

aboral part of the calyx and the stalk fluorescence was completely absent (Fig. 3 H). GABAergic 21 

neurons were widely distributed in the whole animal (Fig. 3 I). GABA-positive cells were also 22 

present in the sub-epidermal plexus of the stalk (Fig. 3 F). Along the tube feet GABAergic neurons 23 

were detected: they appeared as flat cells connected by GABA positive fibres less numerous than 24 

serotonergic ones (Fig. 3 L). Cholinergic neurons were found in pentacrinoid entoneural system: 25 

fluorescence was observed in the central nerve cord running along the stalk and inside the calyx in 26 

the developing aboral nerve centre (Fig. 3 J). ChAT-positive cells were also detected along the tube 27 

feet and, particularly, at the level of the papillae (Fig. 3 M). No dopamine-positive cell was detected 28 

in pentacrinoid samples. 29 

3.5. miRNAs expression during A. mediterranea development 30 

A novel protocol for in situ hybridization in different crinoid post-embryonic stages was 31 

successfully developed. This was employed to characterize the expression pattern of three neural-32 

related miRNAs (miR-124, miR-7 and miR-184) in both doliolariae and pentacrinoids. Indeed, most 33 

miRNAs are evolutionary conserved and some are specifically expressed in specific neural 34 
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territories of both vertebrate and invertebrate species. Their expression can therefore be used as 1 

molecular marker to identified neural populations. 2 

miR-124 was abundantly expressed in the apical neural plexus of doliolaria larvae, forming a 3 

densely-stained arch characterised by two lateral spots of stronger signal (Fig. 4 A and C). miR-124 4 

signal was observed especially in the neural region under the apical pit and in the neural plexus 5 

extending between the adhesive pit and the vestibulum (Fig. 4 B). In pentacrinoids, miR-124 mature 6 

transcript was present in neurons located along the tube feet, and in the neural plexus associated 7 

with the digestive system (Fig. 4 D-F). In tube feet, stained neurons were regularly interspersed 8 

along their entire length, although it was not possible to clearly define if those neurons were 9 

associated with the papillae.  10 

In doliolaria, miR-7 expression was detected in the apical neural plexus, in a sub-set of neurons 11 

drawing an arch around the anterior part the vestibulum (Fig. 4 G). Transcript localization was 12 

confirmed by sagittal sections in which stained cells were observed in the ventral region between 13 

the adhesive pit and the vestibulum (Fig. 4 I). Mature transcripts were also found right under the 14 

apical pit (Fig.4 G), as confirmed in lateral view (Fig. 4 H). In the pentacrinoid stage, miR-7 was 15 

expressed in the proximal part of tube feet, whereas signal could not be detected in their tip. 16 

Furthermore, signal was detected around the mouth opening. miR-7 expression was found neither at 17 

the base of the calyx nor in the stalk (Fig. 4 J, K and L). 18 

miR-184 mature transcripts were found in different tissues of doliolaria body. Expression was 19 

detected in the apical portion, where cell bodies of the neural plexus are concentrated, as well as in 20 

endodermal and mesodermal derivatives (Fig. 4 M and N). In fact, in post-in situ histological 21 

sections, miR-184 expression appeared widely distributed in the evaginates of the enterohydrocoel 22 

and in the surrounding mesenchymal cells (Fig. 4 O). In the apical neural plexus, signal was 23 

concentrated in cells located just under the apical pit, as observable in both whole mount and 24 

sectioned samples (Fig. 4 N and O). Also in pentacrinoids, miR-184 was expressed in both neural 25 

and non-neural tissues (Fig. 4 P). Several cells along the entire length of the tube feet were clearly 26 

marked. Moreover, miR-184 transcripts were found in the epithelium of the digestive tract, from the 27 

mouth to the intestine; the wall of the intestine was particularly stained in the aboral tract, as it was 28 

clearly visible both in whole mount samples (Fig. 4 Q) and in sections (Fig. 4 R). 29 

miR-133, a muscle specific miRNA, was used as a negative control since it has been demonstrated 30 

that A. mediterranea doliolariae and pentacrinoids lack muscles (Barbaglio et al. 2012; Chia et al., 31 

1986). Indeed, both the developmental stages processed with miR-133 probe never showed positive 32 

signal (data not showed). 33 

 34 
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4. Discussion 1 

As basal echinoderms, crinoids are promising model systems in developmental and evolutionary 2 

biology. An increasing number of studies have been performed on the developmental stages of 3 

these organisms, mostly concerning skeletogenesis (Amemiya et al., 2015; Comeau et al., 2017) 4 

and molecular phylogeny (Hemery et al., 2013; Reich et al., 2015; Rouse et al., 2013; Telford et al., 5 

2014), whereas the development of the nervous system has been only partially explored (Barbaglio 6 

et al., 2012; Nakano et al., 2009). This strongly hampers the overall understanding of echinoderm 7 

nervous system evolution. Thus, in this work we investigated the neuroanatomy of the two main 8 

developmental stages of the feather star A. mediterranea. 9 

The histological analysis of doliolaria larva confirmed its neuroanatomy, previously described in 10 

Barbaglio et al. (2012), consisting mainly in a basiepithelial neural plexus integrated in larval 11 

epidermis and particularly developed in the apical part of the doliolaria. The lateral plexus 12 

thickenings, visible on both side of the body, reflect the overall bilateral symmetry of the larva. In 13 

addition, our immunohistochemistry analysis revealed neural fibers directing from the plexus 14 

towards the body surface. These connections were particularly appreciable under the apical pit from 15 

which the sensory apical tuft emerges, suggesting that the apical neural plexus may function as an 16 

integrating centre for sensory inputs (Burke, 2011). The integrative activity of the apical neural 17 

plexus was further supported by the presence of different neural populations (Fig. 5). Serotonin 18 

localization was already detected in the anterior region of neural plexus of the crinoid 19 

Oxycomanthus japonicus larvae but a detailed description of its organization was missing (Nakano 20 

et al., 2009). In all other Ambulacraria (Echinodermata + Hemichodrata) larvae, an apical organ 21 

containing serotonergic neurons has been extensively described. Comparative studies reported that 22 

the ancestral apical organ was organized into a bilateral serotonergic nerve plexus associated with 23 

ciliary cells in the anterior-most end of the larva. From this simple organization, the apical organ 24 

has been differentially modified in each larval form (Byrne et al., 2007; Nielsen, 2005). In asteroid 25 

bipinnaria and holothuroid auricularia larvae, the apical organ consists of serotonergic cells along 26 

the anterior ciliary band sectors. In particular, in asteroids, the apical organ is more complex, being 27 

organised in two ganglia associated with a plexus. Similarly, ophioplutei have a pair of serotonergic 28 

ganglia located close to the ciliary bands (Hirokawa et al., 2008). The simple apical organ of 29 

auricularia is instead similar to that of hemichordate tornaria larva (Byrne et al., 2007; Chee & 30 

Byrne, 1999; Nakano et al., 2006; Nezlin & Yushin, 2004) whereas in echinopluteus this structure 31 

is outside the ciliary epithelium, forming two cluster of serotonergic cells joined by a neuropil 32 

(Bishop & Burke, 2007; Byrne et al., 2007). In this context, our description of doliolaria 33 
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serotoninergic neurons complete the framework of larval apical organ in Ambulacraria supporting 1 

its ancestral bilateral organisation. 2 

GABAergic neurons in echinoderms have received much less attention. In the doliolaria of A. 3 

mediterranea we detected GABA only in a restricted area of the neural plexus, right under the 4 

adhesive pit. This may indicate a role during settlement either by controlling the release of sticky 5 

substance by the adhesive pit, or by integrating information from anterior sensory cells. Indeed, as 6 

observed in the ascidian Ciona intestinalis (Takamura, Minamida, & Okabe, 2010), in many 7 

mollusc species (García-Lavandeira et al., 2005; Laimek et al., 2008; Rumrill & Cameron, 1983) 8 

and in sea urchin GABA induces settlement (Rahman & Ueharai, 2001) through the regulation of 9 

swimming activity (Bisgrove & Burke, 1987). In the pluteus stage of the echinoid Hemicentrotus 10 

pulcherrimus, GABA immunoreactive cells were detected in the ciliary band of the arms and 11 

functional analyses demonstrated the contribution of GABAergic system in the regulation of larval 12 

movements (Katow, Abe, Katow, Zamani, & Abe, 2013). We never observed GABA 13 

immunoreactivity in proximity of ciliated bands suggesting that in A. mediterranea doliolaria, this 14 

neurotransmitter could be involved in settlement through a different mechanism. The localization 15 

allows excluding any involvements of this neurotransmitter in the regulation of ciliary beating. The 16 

differences in larval GABAergic systems observed between A. mediterranea and H. pulcherrimus 17 

could also be due to the highly-derived morphology displayed by the echinopluteus but further 18 

functional and comparative analyses, including different echinoderm larvae are needed to clarify 19 

this intriguing topic. 20 

The organization of the nervous system in the transient cystidean phase has been partially described 21 

in O. japonicus (Nakano et al., 2009), but until now only scant and incomplete data were available 22 

about the neural organization of the subsequent pentacrinoid stage. In particular, in the pentacrinoid 23 

stage of A. mediterranea, the entoneural system has never been described in details and it was 24 

thought to appear only late in development (Hyman, 1955). In the present study, combining 25 

histological analysis and β-tubulin immunodetection, the first description of the developing aboral 26 

nerve centre is reported. Indeed, at the base of the calyx a conspicuous concentration of somata was 27 

evident, from which a thick nerve cord ran in the stalk reaching the attachment disk. Five β-tubulin-28 

positive neurite bundles could be observed directing towards the oral surface, suggesting that 29 

primordia of the brachial nerves appear long before the development of the arms. Most of the 30 

epidermal plexus could not be detected by semi-thin sections but somata and cell processes 31 

associated with the papillae were clearly recognizable along tube feet and appeared β-tubulin 32 

immunoreactive, in agreement with previous description (Byrne & Fontaine, 1983).  33 

Regarding neural type distribution, serotonergic neurons were numerous in tube feet, where they 34 
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formed a complex network of fibers under the thin epidermis, and in the oral region of the calyx, 1 

where they were arranged in a looser network and possessed short processes. These results differ 2 

from those obtained in the adult, where serotonin was detected in the brachial nerve and coelomic 3 

epithelium, and only weak signal was found in the ambulacral groove (Candia Carnevali et al., 4 

1996). This may be due to differences in the techniques used or may indicate that during 5 

pentacrinoid growth neurogenesis proceeds, producing new cell types in internal tissues. The 6 

GABAergic system appeared more widely distributed than the serotonergic one: numerous sub-7 

epithelial neurons are present in both the stalk and the calyx, in which the neural plexus reaches the 8 

digestive epithelium. GABAergic neurons were observed also in tube feet, although they were 9 

arranged differently from serotonergic cells: nerve fibers proceeded along each side of the tube feet, 10 

flanking the hydrocoelic canal. A similar arrangement was displayed by cholinergic neurons but 11 

ChAT-positive cells were also detected in the papillae. Cell bodies and fibers of the aboral nerve 12 

centre and stalk nerves, (entoneural system) were also found to be cholinergic. This is in line with 13 

the neurobiology of the adult, as this system constitutes the major part of the nervous system and 14 

has motor functions (Heinzeller & Welsch, 1994). In adult specimens of the asteroid Asterias 15 

rubens, GABAergic neurons were observed in radial nerve cords, tube feet and regions of the 16 

digestive system. Particularly, the distribution of this neurotransmitter in the nerve plexus of 17 

asteroids (Newman & Thorndyke, 1994) together with pharmacological investigations in both 18 

asteroid and echinoid species demonstrated that GABA had an excitatory effect on tube feet 19 

(Florey, Cahill, & Rathmayer, 1975; Protas & Muske, 1980). Acetylcholine also caused tube foot 20 

contraction. It was therefore proposed that GABA responses were mediated through cholinergic 21 

motor neurons even if the two neurotransmitters seemed to interact with different receptors 22 

(Newman & Thorndyke, 1994; Protas & Muske, 1980). The occurrence of cross-talk between 23 

different neuronal populations was also reported for other neurotransmitters systems: in sea urchin 24 

larvae, dopamine and serotonin regulated forward and backward swimming speed in a 25 

complementary manner (Yoshihiro, Keiko, Chieko, Akemi, & Baba, 1992). The similar 26 

organization displayed by cholinergic and GABAergic neurons in pentacrinoid tube feet, suggests a 27 

possible interaction between systems but only future functional analyses will clarify the 28 

involvement of each neurotransmitter in tube feet contraction. 29 

Finally, a new protocol for in situ hybridization in crinoids was designed, taking into consideration 30 

the technical difficulties connected mainly with the yolk-rich body of the lecithotrophic doliolaria 31 

and the skeletal stereom of the pentacrinoid. This was exploited to study the expression of neural 32 

specific miRNAs, as they have been demonstrated to provide an effective tool to identify neural 33 

territories in different metazoans. 34 
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miR-124 is the major nervous system-specific miRNA and was found in all of the bilateral species 1 

studied to date. In particular, with very few exceptions, miR-124 is expressed in the central nervous 2 

system regardless of the neuroanatomy of the taxon (Chen & Zeller, 2011; Christodoulou et al., 3 

2010; Sun & Lai, 2013). In the doliolaria of A. mediterranea miR-124 mature transcripts were 4 

restricted to the apical part of the neural plexus, in the area under the apical pit where a group of 5 

somata was found (Chia et al., 1986). This expression pattern seems to indicate that the apical organ 6 

and the rest of the apical neural plexus, where both serotonergic and GABAergic neurons were 7 

located, may be the coordinating area of the larval nervous system, a sort of central nervous system, 8 

as reported in other echinoderm larvae (Byrne et al., 2007). In the pentacrinoid, miR-124 expression 9 

was apparently limited to the basiepithelial (ectoneural) system, at the level of tube feet and the 10 

digestive tract. This was a surprising result given the predominance of the entoneural system in 11 

adult crinoids (Candia Carnevali & Bonasoro, 2001), which actually exerts “centralizing” functions, 12 

and suggested that in trying to make comparisons with other groups, the ectoneural system may be 13 

the best one to consider. To confirm these results, detection of miR-124 in other echinoderm larvae 14 

and adults is surely necessary and results will be precious to clarify echinoderm nervous system 15 

evolution.  16 

miR-7 is another highly conserved, neuron-enriched miRNA, but during animal evolution its 17 

expression domains extended also to non-neural tissues, such as endocrine islets of mammal 18 

pancreas and pharyngeal endoderm of cephalochordates (Bravo-Egana et al., 2008; Candiani, 19 

Moronti, De Pietri Tonelli, Garbarino, & Pestarino, 2011). In the nervous system of both 20 

protostomes and deuterostomes, miR-7 appears to be restricted to specific areas: in insects and 21 

cephalochordates, miR-7 was detected in photoreceptors (Candiani et al., 2011; Li & Carthew, 22 

2005). In vertebrates and annelids, it is predominantly expressed in the neurosecretory areas of their 23 

nervous systems, the hypothalamus and the neurosecretory centre respectively (Christodoulou et al., 24 

2010). It has been proposed that in ancestral bilaterians miR-7 first appeared in dual sensory-25 

neurosecretory neurons, that eventually led to the evolution of optimized sensory neurons and 26 

neurosecretory centres in modern species (Tessmar-Raible et al., 2007). In A. mediterranea 27 

doliolaria, miR-7 was expressed al low level in the ventral region of the apical neural plexus and in 28 

cells underlying the apical pit. In the pentacrinoid, miR-7 was restricted to the mouth region and the 29 

proximal part of tube feet. Although a more detailed analysis of cell types in crinoid larvae and 30 

juveniles are necessary to make relevant evolutionary considerations, the results appeared 31 

encouraging, particularly considering that the apical organs of many other larvae contain 32 

neurosecretory neurons (Marlow et al., 2014; Tessmar-Raible et al., 2007). 33 

miR-184 is extremely conserved in Nephrozoa, a taxon encompassing protostomes and 34 
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deuterostomes, but its expression and function in the majority of animals still remain obscure. In 1 

vertebrates, miR-184 research concentrates on its involvement in tumours and corneal diseases 2 

(Emdad et al., 2015; Shalom-Feurstein et al., 2012; Wong, Chan & Wei, 2009), but a complete 3 

expression profile during development has never been performed. In amphioxus, miR-184 4 

transcripts were found in the developing neural tube and somites, and later in the cerebral vesicle, 5 

the pharynx, the endostyle and the first two gill slits (Candiani et al., 2011). In Drosophila, miR-6 

184 expression is highly dynamic during development: in embryogenesis, it is prevalently 7 

expressed in the ventral nerve cord and in restricted endodermal and mesodermal areas, while 8 

larvae also express this miRNA in several imaginary discs (Li et al., 2011). In line with these 9 

findings, in A. mediterranea, miR-184 was expressed in ectodermal, mesodermal and endodermal 10 

derivatives in both doliolaria and pentacrinoid stages. In doliolaria, this miRNA was found in 11 

anterior neurons, the mesenchyme and the enterohydrocoel. In the latter, the expression was not 12 

uniform, but regularly arranged in spots, suggesting the presence of different cell types. Similarly, 13 

in the pentacrinoid, miR-184 displayed both neuronal and endodermal expression. Our results show 14 

that there is conservation at least in the type of embryonic tissues that express this microRNA, but 15 

more detailed analysis of miRNA expression during nervous system development in crinoids and 16 

other echinoderms will be required to make appropriate comparisons. 17 

In conclusion, our results confirmed and implemented previous descriptions of doliolaria nervous 18 

system, revealing that larval apical region includes both serotonergic and GABAergic neurons, 19 

which were differentially localized within the plexus. This suggests that different larval activities 20 

are under the control of different neural populations. In the pentacrinoid, analyses showed the 21 

presence of a cholinergic entoneural nervous system while the basiepithelial plexus appeared more 22 

composite, displaying different neural populations. The present work sets the stage for future 23 

investigations, providing a proper protocol to successfully perform in situ hybridization, allowing 24 

to answer many of the still highly-debated questions about echinoderm evolution. 25 
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Figure legends 25 

Figure 1. Overview of Antedon mediterranea life cycle. The adult stage (A) is free-living and 26 

feeds by capturing food particles with pinnules that grows on the ten arms. The proximal pinnules 27 

contain gonads, and during breeding season eggs released by the female are kept on pinnules 28 

thanks to gland secretions (B). After external fertilization, the eggs develop on the pinnules (C) 29 

until they hatch at the doliolaria stage (D). The doliolaria is a lecithotrophic larva, characterised by 30 

five transverse ciliary bands (*) and two ciliated groves: the vestibulum (ve) and the adhesive pit 31 

(ad). Anteriorly, a long ciliary tuft emerges from the apical tip (ap). Scale bar = 50 µm. After 2-3 32 

days, the larva settles to an appropriate substratum and undergoes metamorphosis, becoming a 33 
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 21 

pentacrinoid (E). The pentacrinoid grows attached to the substratum through a long stalk (s) and 1 

feeds by filtering water with tube feet (tf) that grows on the oral surface. Scale bar = 100 µm. 2 

Figure 2. Histology (A, B) and immunolocalization (C-H) in doliolaria larva. Frontal section (A) 3 

showing a conspicuous anterior neural plexus at the base of the epidermis from which two main 4 

lateral bundles of neurites extend posteriorly. In sagittal section (B), the neural plexus can be 5 

identified in the anterior region, extending dorsally just under the apical pit. C, D) β-tubulin 6 

immunolocalization in green: frontal (C) and lateral section (D). β-tubulin-positive fibres localized 7 

in the neural plexus from which neural projections direct towards the larva body surface with 8 

particular intensity under the apical pit (arrow) are visible. Cilia of the five ciliary bands are also 9 

immunoreactive.E, F). Serotonin immunolocalization in green: frontal (E) and lateral section (F) 10 

Serotonergic neurons appear concentrated in the anterior region of the neural plexus arranged 11 

dorsally, right under the apical pit (arrow), in two groups at each side of the larva. G, H) GABA 12 

immunolocalization in red: frontal (G) and lateral section (H) GABA-positive cells appear located 13 

in the anterior part of neural plexus, in proximity of the adhesive pit (arrowhead). In 14 

immunolocalization images: nuclei are stained in blue with DAPI. 15 

a = anterior side; ap = apical pit; ad = adhesive pit; d = dorsal side; eh = enterohydrocoelic 16 

evaginates; np = neural plexus; p= posterior side; v = ventral side; ve= vestibulum. Scale bar = 50 17 

µm. 18 

Figure 3. Antedon mediterranea pentacrinoid: histology (A-D) and immunolocalization (E-M). A) 19 

The body of the pentacrinoid is composed of a cup-like calyx (c) and a long stalk (s) that connects 20 

the body to the substrate through an attachment disk (ad). B) The calyx is mainly occupied by the 21 

digestive tract (dt) that opens in a centrally located mouth (m), surrounded by numerous tube feet 22 

(tf). Hydrocoelic (hy) and somarocoelic (so) cavities are recognisable. At the base of the calyx, a 23 

conspicuous aboral neural centre (anc) can be identified, from which a thick nerve bundle runs 24 

along the stalk (sn). C) Higher magnification of tube feet with papillae (pa): cells from the base of 25 

the papillae send processes to the tip. D) The thin stalk is made of skeletal ossicles that surround a 26 

central stalk nerve bundle (sn). E-G) β-tubulin immunolocalization in green. Anti β-tubulin 27 

antibody markes the nervous fibres of the pentacrinoid. Strong fluorescence is present in the stalk 28 

nerve (arrowheads) and in five symmetrically arranged nerve bundles that from the aboral nerve 29 

centre project towards the oral surface (double arrowheads). β-tubulin-positive cells are also 30 

located in the papillae of the tube feet. Red: GABA. H, I) Serotonin immunolocalization in green. 31 

Serotonergic cells are located in basi-epidermal position in the oral region of the calyx and in the 32 

tube feet, where they form a dense net without projecting to the papillae. F, I, L) GABA 33 

immunolocalization in red. GABAergic neurons are mainly located in basi-epithelial plexus both in 34 
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the calyx and the stalk, particularly in neurons associated with the digestive tract. In tube feet, only 1 

few cells are stained. J, M) ChAT immunolocalization in green. Cholinergic neurons can be 2 

detected in the developing aboral nerve centre projecting into the stalk nerve (arrowhead), and also 3 

in the papillae of the tube feet. Scale bars = 100 µm (A, E, H, I and J); 50 µm (B, D, F, G, K, L 4 

and M); 10 µm (C). 5 

Figure 4. microRNA expression in A. mediterranea developmental stages. A-F) miR-124 6 

expression. A) miR-124 is present exclusively in the anterior part of the neural plexus forming an 7 

arch characterised by two lateral spots of stronger signal (double arrowhead). B) Lateral view 8 

shows the signal both at the level of the apical pit (arrowhead) and of the adhesive pit. C) Frontal 9 

section of miR-124 doliolaria. D) In pentacrinoid, miR-124 mature transcripts ae present in neurons 10 

along the tube feet and in the neurons associated with the digestive system (arrow). E) 11 

Magnification of the calyx of miR-124 sample, showing expression in cells regularly interspersed 12 

along tube feet. F) Longitudinal section of miR-124 pentacrinoid. G-L) miR-7 expression. G) In 13 

doliolaria, miR-7 expression is observable in a ventral subset of neurons of the neural plexus around 14 

the anterior part the vestibulum. H) Mature transcripts are also present right under the apical pit 15 

(arrowhead). I) Longitudinal section showing miR-7 signal in the ventral area of the neural plexus. 16 

J) In pentacrinoid, miR-7 localization is restricted in the proximal part of tube feet (asterisks) and 17 

around the mouth opening. K) Magnification of the oral region of the calyx. L) Longitudinal 18 

section of a miR-7 pentacrinoid. M-R) miR-184 expression. M-N) In doliolaria, miR-184 is 19 

expressed in the neural plexus (double arrowhead), reaching the area under the apical pit 20 

(arrowhead), but also in the mesenchyme and in the enterohydrocoel evaginates (star). O) Frontal 21 

section of miR-184 doliolaria showing strong signal in the enterohydrocoel evaginates. P) In 22 

pentacrinoid, miR-184 is widely expressed in the sub-epidermal plexus along the tube feet 23 

(asterisks) and in the digestive system (arrows). Q) Magnification of the calyx of miR-184 sample, 24 

showing expression in the digestive system. R) Sections of a miR-184 pentacrinoid confirme the 25 

ectodermal, mesodermal and endodermal expression of this miRNA. Scale bars = 10 µm (C); 50 26 

µm (A, B, D-R). a = anterior side; ab = aboral side; d = dorsal side; or = oral side; p = posterior 27 

side; v = ventral side. 28 

Figure 5. Schematic representation of the distribution of serotonergic (green), GABAergic (red) 29 

and cholinergic (blue) neurons in A. mediterranea. doliolaria A: Frontal section of doliolaria; B: 30 

Sagittal section of doliolaria. C) Pentacrinoid.  31 

 32 

 33 
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Figure 1. Overview of Antedon mediterranea life cycle. The adult stage (A) is free-living and feeds by 
capturing food particles with pinnules that grows on the ten arms. The proximal pinnules contain gonads, 
and during breeding season eggs released by the female are kept on pinnules thanks to gland secretions 

(B). After external fertilization, the eggs develop on the pinnules (C) until they hatch at the doliolaria stage 
(D). The doliolaria is a lecithotrophic larva, characterised by five transverse ciliary bands (*) and two ciliated 
groves: the vestibulum (ve) and the adhesive pit (ad). Anteriorly, a long ciliary tuft emerges from the apical 
tip (ap). Scale bar = 50 µm. After 2-3 days, the larva settles to an appropriate substratum and undergoes 

metamorphosis, becoming a pentacrinoid (E). The pentacrinoid grows attached to the substratum through a 

long stalk (s) and feeds by filtering water with tube feet (tf) that grows on the oral surface. Scale bar = 100 
µm.  
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Figure 2. Histology (A, B) and immunolocalization (C-H) in doliolaria larva. Frontal section (A) showing a 
conspicuous anterior neural plexus at the base of the epidermis from which two main lateral bundles of 

neurites extend posteriorly. In sagittal section (B), the neural plexus can be identified in the anterior region, 

extending dorsally just under the apical pit. C, D) β-tubulin immunolocalization in green: frontal (C) and 
lateral section (D). β-tubulin-positive fibres localized in the neural plexus from which neural projections 

direct towards the larva body surface with particular intensity under the apical pit (arrow) are visible. Cilia of 
the five ciliary bands are also immunoreactive.E, F). Serotonin immunolocalization in green: frontal (E) and 

lateral section (F) Serotonergic neurons appear concentrated in the anterior region of the neural plexus 
arranged dorsally, right under the apical pit (arrow), in two groups at each side of the larva. G, H) GABA 
immunolocalization in red: frontal (G) and lateral section (H) GABA-positive cells appear located in the 

anterior part of neural plexus, in proximity of the adhesive pit (arrowhead). In immunolocalization images: 
nuclei are stained in blue with DAPI.  

a = anterior side; ap = apical pit; ad = adhesive pit; d = dorsal side; eh = enterohydrocoelic evaginates; np 
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= neural plexus; p= posterior side; v = ventral side; ve= vestibulum. Scale bar = 50 µm.  
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Figure 3. Antedon mediterranea pentacrinoid: histology (A-D) and immunolocalization (E-M). A) The body of 
the pentacrinoid is composed of a cup-like calyx (c) and a long stalk (s) that connects the body to the 

substrate through an attachment disk (ad). B) The calyx is mainly occupied by the digestive tract (dt) that 

opens in a centrally located mouth (m), surrounded by numerous tube feet (tf). Hydrocoelic (hy) and 
somarocoelic (so) cavities are recognisable. At the base of the calyx, a conspicuous aboral neural centre 

(anc) can be identified, from which a thick nerve bundle runs along the stalk (sn). C) Higher magnification of 
tube feet with papillae (pa): cells from the base of the papillae send processes to the tip. D) The thin stalk is 
made of skeletal ossicles that surround a central stalk nerve bundle (sn). E-G) β-tubulin immunolocalization 

in green. Anti β-tubulin antibody markes the nervous fibres of the pentacrinoid. Strong fluorescence is 
present in the stalk nerve (arrowheads) and in five symmetrically arranged nerve bundles that from the 

aboral nerve centre project towards the oral surface (double arrowheads). β-tubulin-positive cells are also 
located in the papillae of the tube feet. Red: GABA. H, I) Serotonin immunolocalization in green. 

Serotonergic cells are located in basi-epidermal position in the oral region of the calyx and in the tube feet, 
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where they form a dense net without projecting to the papillae. F, I, L) GABA immunolocalization in red. 
GABAergic neurons are mainly located in basi-epithelial plexus both in the calyx and the stalk, particularly in 

neurons associated with the digestive tract. In tube feet, only few cells are stained. J, M) ChAT 
immunolocalization in green. Cholinergic neurons can be detected in the developing aboral nerve centre 

projecting into the stalk nerve (arrowhead), and also in the papillae of the tube feet. Scale bars = 100 µm 
(A, E, H, I and J); 50 µm (B, D, F, G, K, L and M); 10 µm (C).  
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Figure 4. microRNA expression in A. mediterranea developmental stages. A-F) miR-124 expression. A) miR-
124 is present exclusively in the anterior part of the neural plexus forming an arch characterised by two 

lateral spots of stronger signal (double arrowhead). B) Lateral view shows the signal both at the level of the 

apical pit (arrowhead) and of the adhesive pit. C) Frontal section of miR-124 doliolaria. D) In pentacrinoid, 
miR-124 mature transcripts ae present in neurons along the tube feet and in the neurons associated with 
the digestive system (arrow). E) Magnification of the calyx of miR-124 sample, showing expression in cells 

regularly interspersed along tube feet. F) Longitudinal section of miR-124 pentacrinoid. G-L) miR-7 
expression. G) In doliolaria, miR-7 expression is observable in a ventral subset of neurons of the neural 

plexus around the anterior part the vestibulum. H) Mature transcripts are also present right under the apical 
pit (arrowhead). I) Longitudinal section showing miR-7 signal in the ventral area of the neural plexus. J) In 

pentacrinoid, miR-7 localization is restricted in the proximal part of tube feet (asterisks) and around the 
mouth opening. K) Magnification of the oral region of the calyx. L) Longitudinal section of a miR-7 

pentacrinoid. M-R) miR-184 expression. M-N) In doliolaria, miR-184 is expressed in the neural plexus 
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(double arrowhead), reaching the area under the apical pit (arrowhead), but also in the mesenchyme and in 
the enterohydrocoel evaginates (star). O) Frontal section of miR-184 doliolaria showing strong signal in the 
enterohydrocoel evaginates. P) In pentacrinoid, miR-184 is widely expressed in the sub-epidermal plexus 
along the tube feet (asterisks) and in the digestive system (arrows). Q) Magnification of the calyx of miR-
184 sample, showing expression in the digestive system. R) Sections of a miR-184 pentacrinoid confirme 

the ectodermal, mesodermal and endodermal expression of this miRNA. Scale bars = 10 µm (C); 50 µm (A, 

B, D-R). a = anterior side; ab = aboral side; d = dorsal side; or = oral side; p = posterior side; v = ventral 
side.  
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Figure 5. Schematic representation of the distribution of serotonergic (green), GABAergic (red) and 
cholinergic (blue) neurons in A. mediterranea. doliolaria A: Frontal section of doliolaria; B: Sagittal section of 

doliolaria. C) Pentacrinoid.  
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