148 research outputs found

    Multivariate analysis of the influence of peri-implant clinical parameters and local factors on radiographic bone loss in the posterior maxilla: a retrospective study on 277 dental implants

    Get PDF
    Objectives: The aim of the present study was to investigate whether peri-implant clinical parameters (modified plaque index (mPI), bleeding and/or suppuration on probing (B/SOP)) and local factors (type of prostheses, screw emergence, platform diameter, and abutment angulation) might contribute to the development of additional bone loss and peri-implantitis around dental implants. Materials and methods: Two hundred seventy-seven external hex connection implants placed in the posterior maxilla of 124 patients were retrospectively evaluated. They were divided into two groups: physiologic bone loss < 2 mm (PBL) or additional bone loss ≄ 2 mm (ABL). GEE logistic regression was applied to evaluate the influence of type of prostheses (implant-supported single crown (ISSC), fixed partial denture (ISFPD), and full denture (ISFD)) and clinical parameters (mPI and S/BOP) on bone loss. Results: Among the 277 implants, 159 (57.4%) presented PBL and 118 (42.6%) presented ABL. Within the ABL group, 20.6% implants were diagnosed with peri-implantitis. mPI significantly correlated with the type of prosthesis and the highest value of mPI (index = 3) was observed in ISFD (23.8%). Moreover, peri-implantitis was more frequently associated with ISFD (32.79%) than ISSC and ISFDP (13.79% and 13.48, respectively) Conclusions: ISFD in the posterior maxilla presented high rates of ABL and showed a higher prevalence of peri-implantitis. None of the local factors seemed to contribute to the development of these conditions. Further investigations are needed to prospectively support the results of the present study. Clinical relevance: Patients rehabilitated with ISFD should be carefully monitored and have more frequent maintenance visits to prevent or control peri-implant bone loss

    Role of heavy-meson exchange in pion production near threshold

    Full text link
    Recent calculations of ss-wave pion production have severely underestimated the accurately known pp→ppπ0pp\rightarrow pp\pi^0\ total cross section near threshold. In these calculations, only the single-nucleon axial-charge operator is considered. We have calculated, in addition to the one-body term, the two-body contributions to this reaction that arise from the exchange of mesons. We find that the inclusion of the scalar σ\sigma-meson exchange current (and lesser contributions from other mesons) increases the cross section by about a factor of five, and leads to excellent agreement with the data. The results are neither very sensitive to changes in the distorting potential that generates the NNNN wave function, nor to different choices for the meson-nucleon form factors. We argue that pp→ppπ0pp\rightarrow pp\pi^0\ data provide direct experimental evidence for meson-exchange contributions to the axial current.Comment: 28 Pages, IU-NTC #93-0

    Acceleration of the Meckel Syndrome by Near-Infrared Light Therapy

    Get PDF
    www.karger.com/nne This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Experimental Search for Solar Axions

    Get PDF
    A new technique has been used to search for solar axions using a single crystal germanium detector. It exploits the coherent conversion of axions into photons when their angle of incidence satisfies a Bragg condition with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1-kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of g_{a,\gamma\gamma}<2.7\times 10^{-9} GeV^{-1} independent of axion mass up to \sim 1 keV

    QCD Sum Rules for ÎŁ\Sigma Hyperons in Nuclear Matter

    Full text link
    Within finite-density QCD sum-rule approach we investigate the self-energies of ÎŁ\Sigma hyperons propagating in nuclear matter from a correlator of ÎŁ\Sigma interpolating fields evaluated in the nuclear matter ground state. We find that the Lorentz vector self-energy of the ÎŁ\Sigma is similar to the nucleon vector self-energy. The magnitude of Lorentz scalar self-energy of the ÎŁ\Sigma is also close to the corresponding value for nucleon; however, this prediction is sensitive to the strangeness content of the nucleon and to the assumed density dependence of certain four-quark condensate. The scalar and vector self-energies tend to cancel, but not completely. The implications for the couplings of ÎŁ\Sigma to the scalar and vector mesons in nuclear matter and for the ÎŁ\Sigma spin-orbit force in a finite nucleus are discussed.Comment: 20 pages in revtex, 6 figures available under request as ps files, UMD preprint #94--11

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    Get PDF
    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of gaγγ<2.7⋅10−9g_{a\gamma \gamma} < 2.7\cdot 10^{-9} GeV−1^{-1}, independent of axion mass up to ~ 1 keV.Comment: RevTeX, 11 pages, figures can be obtained by fax from [email protected]. Submitted to Phys. Lett.

    A Decommissioned LHC Model Magnet as an Axion Telescope

    Get PDF
    The 8.4 Tesla, 10 m long transverse magnetic field of a twin aperture LHC bending magnet can be utilized as a macroscopic coherent solar axion-to-photon converter. Numerical calculations show that the integrated time of alignment with the Sun would be 33 days per year with the magnet on a tracking table capable of ±5o\pm 5^o in the vertical direction and ±40o\pm 40^o in the horizontal direction. The existing lower bound on the axion-to-photon coupling constant can be improved by a factor between 50 and 100 in 3 years, i.e., gaγγâ‰Č9⋅10−11GeV−1g_{a\gamma\gamma} \lesssim 9\cdot 10^{-11} GeV^{-1} for axion masses â‰Č\lesssim 1 eV. This value falls within the existing open axion mass window. The same set-up can simultaneously search for low- and high-energy celestial axions, or axion-like particles, scanning the sky as the Earth rotates and orbits the Sun.Comment: Final version, accepted for publication in Nucl. Instr. Meth. A. More information can be found at http://wwwinfo.cern.ch/~collar/SATAN/alvaro.htm
    • 

    corecore