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Abstract

Results are reported of an experimental search for the unique, rapidly varying

temporal pattern of solar axions coherently converting into photons via the

Primakoff effect in a single crystal germanium detector. This conversion is

predicted when axions are incident at a Bragg angle with a crystalline plane.

The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS

detector in Sierra Grande, Argentina yields a new laboratory bound on axion–

photon coupling of gaγγ < 2.7 × 10−9 GeV−1, independent of axion mass up

to ∼ 1 keV.
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Early QCD theories predicted a particle with the quantum numbers of the η–meson,

but with a mass close to that of the pion [1]. A term added to the QCD Lagrangian to

ameliorate this so–called U(1) problem violated CP invariance in strong interactions and

implied a neutron electric–dipole moment about 109 times larger than the experimental

upper bound [2]. Peccei and Quinn [3] introduced a new field causing strong CP–violation

to vanish dynamically. Subsequently, Weinberg [4] and Wilczek [5] demonstrated that the

Peccei–Quinn mechanism generates a Nambu–Goldstone boson, the axion, that mixes with

the πo to acquire a small mass.

Extensive reviews of axion phenomenology, and their effects on stellar evolution, have

been given by Raffelt [6,7]. A detailed treatment of solar axions and of a proposed method

of detecting them was given by van Bibber, et al. [8]. Details of a theory for searching for

axions with germanium detectors was recently given by Creswick, et al. [9] and will not

be repeated here. The objective of this experiment is to detect solar axions through their

coherent Primakoff conversion (see Figure 1) into photons in the lattice of a germanium

crystal when the incident angle satisfies the Bragg condition. As shown in [9], the detection

rates in various energy windows are correlated with the relative orientations of the detector

and the sun. This correlation results in a temporal structure which should be a distinctive,

unique signature of the axion. In this letter, the results of a search using a 1 kg, ultra–

low background germanium detector installed in the HIPARSA iron mine in Sierra Grande,

Argentina at 41o 41’ 24” S and 65o 22’ W are presented. A complete description of the

experimental set–up was given earlier by Di Gregorio, et al. [10] and Abriola, et al. [11].

This experiment was motivated by earlier papers by Buchmüller and Hoogeveen [12] and

by Paschos and Zioutas [13]; the present technique was originally suggested by Zioutas and

developed by Creswick, et al. [9].

The vertical axis of our detector is the (100) crystalline axis. The orientation of the

(010) and (001) axes are unknown at this time. Therefore, to place a bound on the axion

interaction rate, the data must be analyzed for many azimuthal orientations of the crystal,

and the weakest bound selected. To confirm a positive effect, either the azimuthal orientation
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of the (010) and (001) axes must be known or the experiment must be repeated with the

crystal at two or more azimuthal orientations which would have very different calculated

responses.

The terrestrial flux of axions from the sun can be approximated by the expression [8,9]:

dΦ

dE
= λ1/2 Φ

o
(E/Eo)

3

E
o
(eE/Eo − 1)

, (1)

where λ = (gaγγ × 108)4 and is dimensionless, Eo = 1.103 keV, and Φo = 5.95 ×

1014 cm−2 sec−1. The total flux for λ = 1 integrated from 0 to 12 keV is 3.54 ×

1015 cm−2 sec−1. The spectrum is a continuum peaking at about 4 keV decreasing to a

negligible contribution above 8 keV. The differential cross section for Primakoff conversion

on an atom with nuclear charge Ze is [9]:

dσ

dΩ
=

[

Z2αh̄2c2g2
aγγ

16π

]

q2 (4k2 − q2)

(q2 + r−2
o )2

, (2)

where q is the momentum transfer, k is the momentum of the incoming axion, and ro is

the screening length of the atom in the lattice. For germanium, σo = Z2αh̄2c2gaγγ/8π =

1.15 × 10−44 cm2 when gaγγ = 10−8 GeV−1, or equivalently λ = 1.

For light axions the Primakoff process in a periodic lattice is coherent when the Bragg

condition (2d sin θ = nλ) is satisfied, that is when ~q transferred to the crystal is a reciprocal

lattice vector ~G = 2π(h, k, l)/ao. Here ao is the size of the conventional cubic cell, and h, k,

and l are integers [14].

It was shown that the rate of conversion of axions with energy E when the sun is in the

direction k̂, Ṅ(k̂, E), can be written [9]:

Ṅ(k̂, E) = 2h̄c
V

vc

∑

G

|S(G)|2 dσ

dΩ
( ~G)

1

| ~G|2
dΦ

dE
δ(E −

h̄c
∣

∣

∣

~G
∣

∣

∣

2

2k̂ · ~G
) , (3)

where V is the volume of the crystal, vc is the volume of a unit cell, S(G) is the structure

function for germanium, and dΦ/dE is evaluated at the axion energy of h̄c| ~G|2/2k̂ · ~G. The

structure function for germanium is:

S(G) =
[

1 + eiπ(h+k+l)/2
] [

1 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l)
]

. (4)
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Note that in (3) the coherent conversion of axions occurs only for a particular axion

energy given the position of the sun, k̂, and reciprocal lattice vector ~G. However, the detector

has a finite energy resolution; for the detector in Sierra Grande it is 1 keV FWHM at 10 keV.

We take this into account by smoothing Ṅ(k̂, E) with a Gaussian of the appropriate width.

Finally, we take the relevant part of the energy spectrum, in this case from the threshold

energy of 4 keV up to 8 keV (which is just below the X-rays at 10 keV), and calculate the

total rate of conversion in windows of width ∆E, typically 0.5 keV,

R(k̂, E) = 2h̄c
V

vc

∑

G

|S(G)|2 dσ

dΩ

1
∣

∣

∣

~G
∣

∣

∣

2

dΦ

dE

1

2


erf





E − Ea(k̂, ~G)√
2σ



− erf





E − Ea(k̂, ~G) − ∆E√
2σ







 , (5)

where Ea(k̂, G) = h̄c|G|2
2k̂· ~G and erf(x) = 2√

π

∫ x
0 e−t2dt is the error function. In equation (5) we

have neglected the angular size of the core of the sun and the mass of the axion which is

justified when mac
2 is small compared to the core temperature of the sun [12], i.e., up to a

few keV.

The theoretical axion detection rate for this detector, calculated with equation (5), is

shown in Figure 2. The position of the sun is computed at any instant in time using the

U.S. Naval Observatory Subroutines (NOVAS) [15]. The pronounced variation in R(k̂, E)

as a function of time invites the data to be analyzed with the correlation function:

χ ≡
n
∑

i=1

[R(ti, E) − < R(E) >] n(ti) , (6)

where R(ti, E) is the smooth shape of the theoretical rate at the instant of time, ti, < R(E) >

is the average rate over a finite time interval, and n(ti) is the number of events at ti in a time

interval ∆t, usually 0 or 1. The choice for the weighting function W (t, E) = R
(

k̂(t), E
)

−

〈R(E)〉 is motivated by the requirement that any constant background average to zero in χ,

whereas a counting rate which follows R
(

k̂(t), E
)

increases χ.

The number of counts at time, t, in the interval ∆t is assumed to be due in part to axions

and in part to background governed by a Poisson process with mean:
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< n(t) > = [λ R(t, E) + b(E)] ∆t, (7)

where b(E) is constant in time.

The average value of χ is then,

< χ > =
∑

i

[R(ti, E) − < R(E) >] [λ R(ti, E) + b(E)] ∆t

=
∑

i

W (ti, E) [λ R(ti, E) + b(E)] ∆t. (8)

We can add and subtract the constant quantity λ < R(E) > to the second factor in

equation (8). Any time independent contributions multiplied by W (t, E) in eq. (8), and

summed over time, will vanish. Accordingly, taking the limit as ∆t → 0, we obtain:

< χ(λ) > = λ
∫ T

0
W 2(t, E) dt. (9)

The expected uncertainty in χ, (∆χ)2 =< χ2 > − < χ >2, is given by,

(∆χ)2 =
∑

i

∑

j

W (ti, E)W (tj, E) [< n(ti)n(tj) > − < n(ti) >< n(tj) >] =

=
∑

i

W 2(ti, E)
[

< n(ti)
2 > − < n(ti) >2

]

, (10)

where the square bracket is < ∆n(ti) >2, which in Poisson statistics is < n(ti) >. Accord-

ingly,

(∆χ)2 =
∑

i

W 2(ti, E) < n(ti) > . (11)

By (7) we have:

(∆χ)2 =
∑

i

W 2(ti, E) [λ R(ti, E) + b(E)] ∆t,

=
∑

i

W 2(i, E) {λ [R(ti, E) − < R(E) >] + λ < R(E) > + b(E)} ∆t, (12)

which in the limit ∆t → 0 becomes,

(∆χ)2 = λ
∫ T

0
W 3(t, E) dt + RT (E)

∫ T

0
W 2(t, E) dt. (13)

The quantity RT (t, E) is the average total counting rate, including both axion conversions

and background.
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The data are separately analyzed in energy bins, ∆Ek, fixed by the detector resolution

(FWHM ∼ 1 keV in this case). The likelihood function is then constructed:

L(λ) =
∏

k

exp

[

−(χk − < χk >)2

2(∆χk)2

]

. (14)

To an excellent approximation (∆χk)
2 is dominated by background. Maximizing the likeli-

hood function, the most probable value of λ is given by

λo =
∑

k

χk /
∑

k

Ak, (15)

where,

Ak ≡
∫ T

0
W 2

k (t, E) dt, (16)

and the width of the likelihood function is given by,

σλ =

(

∑

k

Ak / bk

)−1/2

. (17)

We note that Ak is proportional to the time of the experiment, so that σλ decreases as T 1/2.

The background scales with the detector mass, while Ak scales as the square of the detector

mass, therefore σλ decreases as (MdT )−1/2.

We have carried out extensive Monte-Carlo test of this method of analysis. As a test of

our analysis, typical results for the likelihood function for the cases λ = 0 (no axions) and

λ = 0.003 were calculated with realistic backgrounds for a detector operating with the same

mass, energy resolution, and threshold as the DEMOS detector at the latitude and longitude

of Sierra Grande for one year. It is clear from this calculation that the correlation function

analysis is consistent and quite sensitive to the presence of a variation in the counting range

due to solar axions with a signal to noise ratio less than 1%.

A scatter plot of the distribution of events on the celestial sphere is shown in Figure 3.

The variation in the density of events reflects the amount of time the sun spends at each

position in the sky, and is consistent with no effect.

As mentioned above, the azimuthal orientation of the germanium crystal is not known,

which requires the analysis be carried out as a function of the angle φ, defined as the angle
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between the (010) axis and true north. The results of these calculations for 707 days of data

in the energy range from 4 to 8 keV in 0.5 keV intervals are shown in Figure 4.

The most conservative upper bound on λ, or equivalently gaγγ , is found by taking for φ

the angle at which λ is maximum. This yields an upper bound on the axion–photon coupling

constant gaγγ < 2.7 × 10−9 GeV−1 at the 95% confidence level.

In Figure 5 we show the area of the axion mass – coupling constant plane excluded by

this result along with results of earlier work.

While this bound is interesting because it is a laboratory constraint, it does not challenge

the bound placed by Raffelt [7], gaγγ ≤ 10−10 GeV−1 based on the helium burning rate in low

mass stars. A coupling constant gaγγ ≃ 10−9 GeV−1 would imply axion emission rates 100

times higher than the stellar bound, and a significantly different concept of stellar evolution.

This experiment can be considerably improved by using a large number of smaller p–type

germanium detectors with known orientations of the (010) axes, with energy thresholds below

2 keV, and energy resolutions corresponding to FWHM ≈ 0.5 keV. This is being proposed

at this time. Another collaboration could also operate the COSME experiment in the new

University of Zaragoza underground laboratory in the Canfranc tunnel at 42o 48’ N and 0o

31’ W. The COSME detector is a 0.25 kg crystal having an energy threshold of ∼1.8 keV

and a resolution of 0.5 keV FWHM at 10 keV. A positive result in this northern hemisphere

experiment over a wider energy range should have a very different temporal pattern from

that of the Sierra Grande experiment, but should yield the same value of λ.

One of the USC/PNNL twin detectors is currently operating in the Baksan Neutrino

Observatory in Russia at 660 mwe, and if moved to a location with greater overburden

could also be used to acquire meaningful data on solar axion rates.

The analysis presented here allows one to legitimately combine the results of a number of

experiments. Accordingly, the results from a large number of experiments located through-

out the world can be combined to yield results equivalent to a single large experiment.
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FIGURES

FIG. 1. Feynman diagram of the Primakoff conversion of axions into photons.

FIG. 2. A typical axion–photon conversion rate, R(t, E), for various energy bands. The exper-

imental energy resolution FWHM = 1.0 keV at 10 keV was used.

FIG. 3. Scatter plot showing the distribution on the celestial sphere of all events between 4 keV

and 8 keV over the data collection period of 707 days.

FIG. 4. Values of λ calculated from the 707 days of data as a function of the azimuthal angle

φ. The error bars are 1σ.

FIG. 5. Exclusion plots on the gaγγ vs. axion–mass plane. The curve to the left are from

Ref. [16]. The letters indicate the following helium gas pressures in the conversion region of a

strong magnetic field: (a) vacuum, (b) 55 Torr, and (c) 100 Torr.
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