37 research outputs found

    Simultaneous acquisition of PAR and PAIN spectra

    Get PDF
    We present a scheme that allows the simultaneous detection of PAR and PAIN correlation spectra in a single two-dimensional experiment. For both spectra, we obtain almost the same signal-to-noise ratio as if a PAR or PAIN spectrum is recorded separately, which in turn implies that one of the spectra may be considered additional information for free. The experiment is based on the observation that in a PAIN experiment, the PAR condition is always also fulfilled. The performance is demonstrated experimentally using uniformly 13C,15N-labeled samples of N-f-MLF-OH and ubiquiti

    Solid-state NMR sequential assignments of α-synuclein

    Get PDF
    Parkinson's disease is amongst the most frequent and most devastating neurodegenerative diseases. It is tightly associated with the assembly of proteins into high-molecular weight protein species, which propagate between neurons in the central nervous system. The principal protein involved in this process is α-synuclein which is a structural component of the Lewy bodies observed in diseased brain. We here present the solid-state NMR sequential assignments of a new fibrillar form of this protein, the first one with a well-ordered and rigid N-terminal par

    Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Get PDF
    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and α-synuclein yielded 88-97% correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90% correctness if also assignments classified as tentative by the algorithm are include

    Yet another polymorph of α-synuclein: solid-state sequential assignments

    Get PDF
    Parkinson's disease is a neurological human proteinopathy, which is caused by the accumulation of protein aggregates of high molecular mass. α-Synuclein is a major component of these fibrillar, β-sheet rich, insoluble assemblies and is deposited in the form of amyloids. Structural characterization of amyloids is possible by solid-state NMR, although no atomic-resolution structure is available as of today. α-Synuclein, as many other pathology-related fibril-forming proteins, can form a number of different polymorphs that are sometimes tricky to obtain in pure form. Here, we describe the chemical shifts and secondary structure analysis of a polymorph that also adopts mainly β-sheet conformation, with a fibrillar core ranging from residues 38 to 94. In addition, residues 15-20 from the N-terminus found to be part of a rigid ordered β-sheet. The chemical shifts differ substantially from the polymorph we previously assigned

    Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier

    Get PDF
    Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens

    Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography

    Get PDF
    For a specific action supporting z = 2 Lifshitz geometries we identify the Lifshitz UV completion by solving for the most general solution near the Lifshitz boundary. We identify all the sources as leading components of bulk fields which requires a vielbein formalism. This includes two linear combinations of the bulk gauge field and timelike vielbein where one asymptotes to the boundary timelike vielbein and the other to the boundary gauge field. The geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry that we call torsional Newton-Cartan (TNC) geometry. There is a constraint on the sources but its pairing with a Ward identity allows one to reduce the variation of the on-shell action to unconstrained sources. We compute all the vevs along with their Ward identities and derive conditions for the boundary theory to admit conserved currents obtained by contracting the boundary stress-energy tensor with a TNC analogue of a conformal Killing vector. We also obtain the anisotropic Weyl anomaly that takes the form of a Hořava-Lifshitz action defined on a TNC geometry. The Fefferman-Graham expansion contains a free function that does not appear in the variation of the on-shell action. We show that this is related to an irrelevant deformation that selects between two different UV completions

    Hexagonal ice in pure water and biological NMR samples

    No full text
    International audienc

    Yet another polymorph of α-synuclein: solid-state sequential assignments

    No full text
    Parkinson’s disease is a neurological human proteinopathy, which is caused by the accumulation of protein aggregates of high molecular mass. α-Synuclein is a major component of these fibrillar, β-sheet rich, insoluble assemblies and is deposited in the form of amyloids. Structural characterization of amyloids is possible by solid-state NMR, although no atomic-resolution structure is available as of today. α-Synuclein, as many other pathology-related fibril-forming proteins, can form a number of different polymorphs that are sometimes tricky to obtain in pure form. Here, we describe the chemical shifts and secondary structure analysis of a polymorph that also adopts mainly β-sheet conformation, with a fibrillar core ranging from residues 38 to 94. In addition, residues 15–20 from the N-terminus found to be part of a rigid ordered β-sheet. The chemical shifts differ substantially from the polymorph we previously assigned.ISSN:1874-270XISSN:1874-271

    Hexagonal ice in pure water and biological NMR samples

    No full text
    ISSN:0925-2738ISSN:1573-500
    corecore