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Abstract Parkinson’s disease is amongst the most fre-

quent and most devastating neurodegenerative diseases. It

is tightly associated with the assembly of proteins into

high-molecular weight protein species, which propagate

between neurons in the central nervous system. The prin-

cipal protein involved in this process is a-synuclein which

is a structural component of the Lewy bodies observed in

diseased brain. We here present the solid-state NMR

sequential assignments of a new fibrillar form of this pro-

tein, the first one with a well-ordered and rigid N-terminal

part.
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Biological context

a-Synuclein is one of the major proteins involved in Par-

kinson’s disease. Aggregates of this normally soluble

protein are found in Lewy Bodies which are associated to

this disability (Brundin et al. 2010; Eller and Williams

2011). The superstructures of these aggregates, as seen by

electron microcopy, are protein fibrils; the aggregation

mechanism of a-synuclein, as well as the structure of the

resulting fibrils, remain however unknown. Structural

studies of a-synuclein fibrillar assemblies are challenging

today as neither of the classical methods which allow to

study protein structures at a molecular level, as X-ray

crystallography or NMR in solution, are adequate tools for

this task. Solid-state NMR has recently developed to

become a powerful tool to reveal conformational details

and atomic-resolution structures of insoluble and non-

crystalline molecular assemblies (Van Melckebeke et al.

2010; Böckmann and Meier 2010; Renault et al. 2010;

Debelouchina et al. 2010; Jehle et al. 2010; Wasmer et al.

2008). Initial structural studies by solid-state NMR of a-

synuclein fibrils, or fragments thereof, have been per-

formed by several groups (Heise et al. 2005, 2008;

Kloepper et al. 2006, 2007; Vilar et al. 2008; Loquet et al.

2010) and 48 (form A) and 23 (form B) residues were

sequentially assigned in ref (Heise et al. 2005) and 26 in ref

(Kloepper et al. 2007). A comparison of the published

spectra reveals the appearance of different polymorphs, as

well as significant heterogeneity, in some individual sam-

ples indicative of differences in the conformation and

packing of a-synuclein molecules within or between the

different fibrils studied. Sample preparation is a crucial step

in fibril structural studies, as structural differences or

polymorphs can arise from different production, purifica-

tion and assembly conditions. Extreme care has to be
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exercised when comparing results from samples of differ-

ent sources or even different batches. We here present the

sequential resonance assignments of an a-synuclein poly-

morph for which for the first time the N-terminal residues,

postulated not to be part of the core in other studies (Vilar

et al. 2008; Miake et al. 2002), are assigned and shown to

be mainly in b-sheet conformation. This polymorph might

show similarities to the B-form described by Heise et al.

(2005) since for 8 residues the chemical shift assignments

coincide with the here presented ones. The spectra also

overlay well with those published for a yet unassigned

polymorph (Loquet et al. 2010).

Methods and experiments

Protein expression and purification

Full-length a-synuclein was expressed in E. coli BL21 DE3

codon ? cells (Stratagene). Cells were grown in LB

medium to an Abs600nm of 0.8 and sedimented at 3,000g for

10 min in 1 l tubes. The pelleted bacteria were washed

with 200 ml of M9 salt and spun at 3,000g for 10 min. The

bacterial pellets were resuspended in half the volume

where they originally grew of M9 media containing 1.75 g

of 15NH4Cl, 2.5 g of U-13C glucose, 2 mM MgSO4,

0.1 mM CaCl2, 10 lg thiamine per litre of culture. Cells

were grown for 30 min at 37�C and a-synuclein expression

was induced by 0.5 mM IPTG for 3 h. The cells were then

harvested by centrifugation (4,000g, 10 min), resupended

into lysis buffer (10 mM Tris pH 7.5, 1 mM EDTA, 1 mM

PMSF) and lysed by sonication. Cell extracts were clarified

by centrifugation at 14,000g, 30 min. Purification was

performed as previously described (Hansen et al. 2011).

Sample preparation

a-Synuclein was dialyzed 16 h against 5 mM Tris–HCl pH

7.5 in double-distilled H2O at 8�C. Fibrillation was

achieved at 300 lM by shaking 1 ml solution aliquots at

37�C in an Eppendorf Thermomixer set at 600 rpm with a

3 mm orbital for 7 days. Fibrils were spun for 20 min at

20� C, 50,000 rpm on a TL100 ultracentrifuge (Beckman)

using the TLA 100.4 rotor. The pelleted material was used

to fill a ZrO2 3.2 mm rotor (Bruker) using a home made

filling device (Böckmann et al. 2009) spun at 40,000 rpm

for 16 h at 18�C in an SW60 TI rotor and an optima L90-K

ultracentrifuge (Beckman).

NMR spectroscopy

We used a suite of 2D and 3D experiments, namely 2D

DARR and DREAM, and 3D NCACB, CAN(CO)CA,

NCOCA, CANCO, NCACO and CCC experiments to

perform the assignment as described in detail in references

(Habenstein et al., accepted, Schuetz et al. 2010) for

sequential assignments. The sequential walk was achieved

by connecting resonances from NCACO/NCACB,

CANCO/CAN(CO)CA and NCOCA spectra. Sequential

connections were also present in CCC spectra. Side-chain

assignments were done using NCACB and CCC spectra.

Full experimental details are given in Table S1. All

assignment spectra were recorded on the same rotor.

However, 2D DARR spectra were taken of four different

preparations to check reproducibility of the sample prepa-

ration. All preparations yielded identical spectra.

Assignment and data deposition

The a-synuclein sample studied here reveals a well-

resolved 2D 13C–13C spectrum with narrow lines, shown in

Fig. 1 (extract of the aliphatic and carbonyl regions).

Assignments are given for crosspeaks corresponding to

directly bonded carbons (in the aliphatic region only below

the diagonal). A representative plane of the 3D NCACB,

NCACO, CANCO and NCOCA experiments is shown in

Fig. 2. The observed line width in the spectra is mostly

comprised between 0.5 and 1 ppm. The lines are not quite

as narrow as in HET-s(218–289) (Siemer et al. 2005), but

allow for an assignment using the afore mentioned 3D

methods. Sequential assignments could be achieved for

85% of residues 1–97 and for 74% of all carbon atoms and

82% backbone amide nitrogen atoms. The chemical shifts

have been deposited in the BMRB under the accession

number 17498. The C-terminal portion including residues

98–140 seems to be flexible, as no signals could be

attributed to this region. However, all amino-acid types

present in the C-terminal region could be observed in the

scalar-coupling based 1H–13C INEPT spectrum (see Sup-

plementary Figure S1). For the stretch ranging from residue

44–57, unambiguous sequential assignments were difficult

due to lower signal/noise or spectral overlap. Figure S2

compares the intensities of resonances of some assigned

residues with ‘‘weak’’ peaks tentatively assigned to resi-

dues in this stretch. Tentative assignments are not consid-

ered in the following and were not submitted to the BMRB.

Assigned atoms are shown in the assignment graph in

Figure S3. Most resolved and strong cross peaks in a 20 ms

2D DARR spectrum can be explained based on this

assignment. Most weaker peaks in this spectrum are due to

sequential contacts and can also be explained by the

assignments.

The secondary chemical shifts for the assigned residues

are given in Fig. 3. One can see that the protein mostly

displays secondary chemical shifts typical of b-sheet
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Fig. 1 2D 13C–13C DARR

Spectrum of a-synuclein fibrils

recorded with a mixing time of

20 ms at a magnetic field of

14.1 Tesla. The data was zero-

filled and apodized in both

dimensions using a 0.3 shifted

squared sine bell function. The

spectrum was processed using

NMRPipe (Delaglio et al.

1995). All one-bond

correlations are labeled (in the

aliphatic region only below the

diagonal)
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Fig. 2 Planes of 3D NCACO, CANCO, NCOCA and NCACB

spectra. For experimental details see Table S1. The data were

analyzed using the CCPN software (Fogh et al. 2002). Assignments of

the peaks are given. Grey labels mean that the maximum of the

corresponding peak is at a different N-shift, therefore leading to

weaker signals in the plane presented
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conformation. The assigned regions do not correspond to

the regions previously assigned by (Heise et al. 2005,

2008) for both A- and B-forms, who found the first 37

N-terminal residues statically disordered. Here, we observe

most of the N-terminal residues of the protein up to residue

97, with an exception being residues 44–57, which are

potentially less structurally homogeneous or more mobile.

The structured regions observed in our sample correspond

however to the regions identified in the presence of

detergent to be a-helical (Bussell and Eliezer 2003). In the

moment we prefer not to add another structural model to

the flurry of already existing ones, but note that the

sequential assignment of a-synuclein presents a first step

towards a high-resolution structure of this protein, which

seems perfectly feasible.
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