230 research outputs found

    Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering

    Full text link
    The measurement of the coherent-population-trapping (CPT) resonances in uncoated Rb vacuum cells has shown that the shape of the resonances is different in different cells. In some cells the resonance has a complex shape - a narrow Lorentzian structure, which is not power broadened, superimposed on the power broadened CPT resonance. The results of the performed investigations on the fluorescence angular distribution are in agreement with the assumption that the narrow structure is a result of atom interaction with Rayleigh scattering light. The results are interesting for indication of the vacuum cleanness of the cells and building of magnetooptical sensors

    Transformation of electromagnetically induced transparency into absorption in a thermal potassium optical cell with spin preserving coating

    Get PDF
    We report a new experimental approach where an order of magnitude enhancement of the electromagnetically induced absorption (EIA) resonance contrast, thus making it similar to that of the EIT resonance contrast is observed under the same conditions. The EIA signal results from the interaction of a weak probe beam with a ground state that has been driven by the pump (counter-propagating) beam. Probe absorption spectra are presented where the laser frequency is slowly detuned over the D 1 line of 39 K vapor contained in a cell with a PDMS antirelaxation coating. In addition to the frequency detuning, a magnetic field orthogonal to the laser beams is scanned around zero value at a higher rate. With both laser beams linearly polarized, an EIT resonance is observed. However, changing the pump beam polarization from linear to circular reverses the resonance signal from EIT to EIA

    Optical control of high-density alkali atom vapor in antirelaxation coated cells

    Get PDF
    Abstract In this work, we report on our investigations on LIAD (Light Induced Atomic Desorption) aimed at achieving high density of alkali atoms vapor in a coated cell at room temperature. The experimental results show the possibility to reach a density up to the limit when the medium becomes optically thick by applying highly efficient homogeneous illumination. The photon reabsorption mechanism prevents the precise evaluation of the density by measuring the absorption of a probe laser beam, but there is clear evidence that densities can be achieved higher by two orders of magnitude than the thermodynamic equilibrium value

    Optical characterization of antirelaxation coatings

    Get PDF
    Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings

    Dense mapping of IL18 shows no association in SLE

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease which behaves as a complex genetic trait. At least 20 SLE risk susceptibility loci have been mapped using both candidate gene and genome-wide association strategies. The gene encoding the pro-inflammatory cytokine, IL18, has been reported as a candidate gene showing an association with SLE. This pleiotropic cytokine is expressed in a range of immune cells and has been shown to induce interferon-γ and tumour necrosis factor-α. Serum interleukin-18 has been reported to be elevated in patients with SLE. Here we aimed to densely map single nucleotide polymorphisms (SNPs) across IL18 to investigate the association across this locus. We genotyped 36 across IL18 by Illumina bead express in 372 UK SLE trios. We also genotyped these SNPs in a further 508 non-trio UK cases and were able to accurately impute a dense marker set across IL18 in WTCCC2 controls with a total of 258 SNPs. To improve the study's power, we also imputed a total of 158 SNPs across the IL18 locus using data from an SLE genome-wide association study and performed association testing. In total, we analysed 1818 cases and 10 770 controls in this study. Our large well-powered study (98% to detect odds ratio = 1.5, with respect to rs360719) showed that no individual SNP or haplotype was associated with SLE in any of the cohorts studied. We conclude that we were unable to replicate the SLE association with rs360719 located upstream of IL18. No evidence for association with any other common variant at IL18 with SLE was found

    Spin randomization of light-induced desorbed Rb atoms

    Get PDF
    We present the first experimental observation of atomic spin randomization of Rb atoms released by light-induced atomic desorption (LIAD). A natural mixture of Rb atoms contained in paraffin and PDMS coated glass cells is irradiated by a free-running diode laser light tuned to the Rb D2 resonance line. The transmission spectrum of the Rb vapor is thus modified and shows a strong enhancement of the hyperfine optical pumping as the light intensity is increased and the laser-frequency scanning rate is decreased. The D2 line spectra are compared for two cases: without and with illumination of the walls of the cell by a UV lamp centered around the wavelength of 404 nm. A simple theoretical model based on the solution of the rate balance equations is introduced in order to analyze the experimental results

    Excitation transfer between the rubidium 5 2 D fine-structure levels in collisions with ground-state rubidium atoms: Experiment and theory

    Get PDF
    We report a study of fine-structure mixing Rb(5 2 D 5/2 )→Rb(5 2 D 3/2 ) in collisions with ground-state Rb atoms. In the experiment, two-photon cw laser excitation was applied to the Rb vapor cell. The measured cross section for the process was (5.8Ϯ1.9)ϫ10 Ϫ14 cm 2 . Theoretical calculations using nonadiabatic collision theory gave a value of 3.4ϫ10 Ϫ14 cm 2

    Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases

    Get PDF
    The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A)

    Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology

    Get PDF
    Genome-wide association studies have uncovered hundreds of DNA changes associated with complex disease. The ultimate promise of these studies is the understanding of disease biology; this goal, however, is not easily achieved because each disease has yielded numerous associations, each one pointing to a region of the genome, rather than a specific causal mutation. Presumably, the causal variants affect components of common molecular processes, and a first step in understanding the disease biology perturbed in patients is to identify connections among regions associated to disease. Since it has been reported in numerous Mendelian diseases that protein products of causal genes tend to physically bind each other, we chose to approach this problem using known protein–protein interactions to test whether any of the products of genes in five complex trait-associated loci bind each other. We applied several permutation methods and find robustly significant connectivity within four of the traits. In Crohn's disease and rheumatoid arthritis, we are able to show that these genes are co-expressed and that other proteins emerging in the network are enriched for association to disease. These findings suggest that, for the complex traits studied here, associated loci contain variants that affect common molecular processes, rather than distinct mechanisms specific to each association.Massachusetts Institute of Technology (MIT IDEA2 Program)Harvard University. Biological and Biomedical Sciences ProgramEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (NICHD RO1 grant HD055150-03)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (K08 NIH-NIAMS career development award (AR055688))National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (DK083756)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (DK086502)Denmark. Forskningsradet for Sundhed og SygdomCenter for the Study of Inflammatory Bowel Diseas
    corecore