49 research outputs found

    Joint IAEA/NNSA International Workshop Nuclear Forensics Methodologies for Practitioners 2013 Scenario Based Exercise – Version 4.0 Instructor’s Manual

    Get PDF
    [Participants will serve as border guards for Reimerland. They will be given brief instruction on the operation of hand‐held RadioIsotope DetectorS (RIDS) and be provided an intelligence briefing that tells them to be on the lookout for suspicious activity at their post. Their instruction will include directing suspicious vehicles to a location for secondary screening. If, after secondary screening, suspicions of a criminal act involving nuclear and or radioactive materials remain, participants have been instructed to request assistance from the NLEA, who will then setup and manage a radiological crime scene. Participants will watch a demonstration of two vehicles containing radioactive materials driving through and setting off a portal monitor. The first vehicle, a semi‐tractor trailer, sets off only a gamma alarm. After the driver provides a shipping manifest of fertilizer, participants, posing as border guards, are expected to waive this vehicle through inspection. The second vehicle, an SUV, set off both gamma and 2 neutron alarms. The alarming of the neutron monitor should prompt participants to set up a secondary inspection of the vehicle immediately. The driver of the vehicle indicates he is in legal possession of an industrial instrument containing an old 133Ba source that has decayed to a level no longer requiring official paperwork according to the IAEA and internationally accepted transportation regulations. Authorities have verified that the industrial source does fit the description of one that is sold commercially. However, upon setting up a secondary screening, participants will use hand‐held detectors to locate several other radioactive sources emanating from a black duffle bag in the rear of the vehicle (Figure 1). Hand held detectors detect the presence of 133Ba, and Pu. Upon questioning, the driver only commits to having the 133Ba industrial source and cannot account for the detection of neutrons within his vehicle. Since neutron alarms also sounded, participants should indicate that a neutron alarm would be inconsistent with a 133Ba source alone and should therefore conclude further investigation is warranted. This will prompt participants to call in a response team from the NLEA to set up a radiological crime scene around the vehicle in question. The response team is able to shoot a 3‐D X‐ray radiograph of the duffle bag without moving it to ensure it is rendered safe and moveable without disturbing the contents in the field (Figure 2). At this point, the duffle bag is entered into inventory as evidence and a chain of custody form is initiated. Swipes are taken from the outer bag to confirm there is no dispersible contamination. The bag and its contents are considered valuable for the investigation by the lead investigator. He determines the duffle bag is safe to transport to RRL for evidence inventory and analysis. The duffle bag and its contents are packaged and sent off to the RRL.

    The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial

    Get PDF
    Prior small studies have shown multiple benefits of frequent nocturnal hemodialysis compared to conventional three times per week treatments. To study this further, we randomized 87 patients to three times per week conventional hemodialysis or to nocturnal hemodialysis six times per week, all with single-use high-flux dialyzers. The 45 patients in the frequent nocturnal arm had a 1.82-fold higher mean weekly stdKt/Vurea, a 1.74-fold higher average number of treatments per week, and a 2.45-fold higher average weekly treatment time than the 42 patients in the conventional arm. We did not find a significant effect of nocturnal hemodialysis for either of the two coprimary outcomes (death or left ventricular mass (measured by MRI) with a hazard ratio of 0.68, or of death or RAND Physical Health Composite with a hazard ratio of 0.91). Possible explanations for the left ventricular mass result include limited sample size and patient characteristics. Secondary outcomes included cognitive performance, self-reported depression, laboratory markers of nutrition, mineral metabolism and anemia, blood pressure and rates of hospitalization, and vascular access interventions. Patients in the nocturnal arm had improved control of hyperphosphatemia and hypertension, but no significant benefit among the other main secondary outcomes. There was a trend for increased vascular access events in the nocturnal arm. Thus, we were unable to demonstrate a definitive benefit of more frequent nocturnal hemodialysis for either coprimary outcome

    Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih

    Get PDF
    Seven mycobacteriophages from distinct geographical locations were isolated, using Mycobacterium smegmatis mc2155 as the host, and then purified and sequenced. All of the genomes are related to cluster A mycobacteriophages, BobSwaget and Lokk in subcluster A2; Fred313, KADY, Stagni, and StepMih in subcluster A3; and MyraDee in subcluster A18, the first phage to be assigned to that subcluster

    Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591

    Prevalence and progression of diabetic nephropathy in South Asian, white European and African Caribbean people with type 2 diabetes: A systematic review and meta-analysis

    Get PDF
    AIMS: To conduct a systematic review and meta-analysis of published observational evidence to assess the difference in the prevalence and progression of diabetic nephropathy, and the development of end-stage renal disease (ESRD) in people from three different ethnic groups with type 2 diabetes (T2DM). MATERIALS AND METHODS: Relevant studies were identified in a literature search of MEDLINE, EMBASE and reference lists of relevant studies published up to May 2018. We decided a priori that there were no differences in the prevalence and progression of diabetic nephropathy, and the development of ESRD in the three ethnicities with T2DM. Pooled relative risks of microalbuminuria by ethnicity were estimated by fitting three random effects meta-analyses models. A narrative synthesis of the nephropathy progression in the studies was carried out. The review was registered in PROSPERO (CRD42018107350). RESULTS: Thirty-two studies with data on 153 827 unique participants were eligible for inclusion in the review. The pooled prevalence ratio of microalbuminuria in South Asian compared with white European participants was 1.14 (95% confidence interval [CI] 0.99, 1.32; P = 0.065), while for African Caribbean vs South Asian participants the pooled prevalence ratio was 1.08 (95% CI 0.93, 1.24; P = 0.327). Results for renal decline were inconsistent, with preponderance towards a high rate of disease progression in South Asian compared with white participants. The estimated pooled incidence rate ratio (IRR) for ESRD was significantly higher in African Caribbean vs white European participants: 2.75 (95% CI 2.01, 3.48; P < 0.001). CONCLUSION: The results of this review did not show a significant link between ethnicity (South Asian, white European and African Caribbean) and the prevalence of microalbuminuria; however, the IRR for ESRD in African Caribbean compared with white European participants was significantly higher. Further research is needed to explore the potential non-albuminuric pathways of progression to ESRD

    6-Azabicyclo[3.2.1]octanes

    No full text

    Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer

    Get PDF
    The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens–like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy. All of the sediments were low in total Fe content ( ≈1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments

    Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials

    Get PDF
    Microbiologic reduction of synthetic and geologic Fe3+ oxides associated with four Pleistocene- age, Atlantic coastal plain sediments was investigated using a dissimilatory Fe reducing bacterium (Shewanella putrefaciens, strain CN32) in bicarbonate buffer. Experiments investigated whether phosphate and anthraquinone-2, 6-disulfonate, (AQDS, a humic acid analogue) influenced the extent of crystalline Fe3+ oxide bioreduction and whether crystalline Fe3+ oxides in geologic materials are more or less reducible than comparable synthetic phases. Anaerobic incubations (108 organisms/mL) were performed both with and without PO4 and AQDS that functions as an electron repository and shuttle. The production of Fe2+ (solid and aqueous) was followed with time, as was mineralogy by Xray diffraction. The synthetic oxides were reduced in a qualitative trend consistent with their surface area and free energy: hydrous ferric oxide (HFO)\u3egoethite\u3ehematite. Bacterial reduction of the crystalline oxides was incomplete in spite of excess electron donor. Biogenic formation of vivianite [Fe3(PO4)2·8H2O] and siderite (FeCO3) was observed; the conditions of their formation was consistent with their solubility. The geologic Fe3+ oxides showed a large range in reducibility, approaching 100% in some materials. The natural oxides were equally or more reducible than their synthetic counterparts, in spite of association with non-reducible mineral phases (e.g., kaolinite). The reducibility of the synthetic and geologic oxides was weakly effected by PO4, but was accelerated by AQDS. CN32 produced the hydroquinone form of AQDS (AHDS), that, in turn, had thermodynamic power to reduce the Fe3+ oxides. As a chemical reductant, it could reach physical regions of the oxide not accessible by the organism. Electron microscopy showed that crystallite size was not the primary factor that caused differences in reducibility between natural and synthetic crystalline Fe3+ oxide phases. Crystalline disorder and microheterogeneities may be more important
    corecore