501 research outputs found
Roles for the Uptake\u3csub\u3e2\u3c/sub\u3e Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior
Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released monoamines. Most studies of monoamine clearance focus on the presynaptic uptake1 transporters SERT, NET and DAT. However, recent studies have demonstrated the expression of the uptake2 transporter OCT3 (organic cation transporter 3), throughout the rodent brain. In contrast to NET, DAT and SERT, OCT3 has higher capacity and lower affinity for substrates, is sodium-independent, and is multi-specific, with the capacity to transport norepinephrine, dopamine, serotonin and histamine. OCT3is insensitive to inhibition by cocaine and antidepressant drugs but is inhibited directly by the glucocorticoid hormone corticosterone. Thus, OCT3 represents a novel, stress hormone-sensitive, monoamine transport mechanism. Incorporating this transporter into current models of monoaminergic neurotransmission requires information on: A) the cellular and subcellular localization of the transporter; B) the effects of OCT3 inhibitors on monoamine clearance; and C) the consequences of decreased OCT3-mediated transport on physiology and/or behavior. This review summarizes studies describing the anatomical distribution of OCT3, its cellular and subcellular localization, its contribution to the regulation of dopaminergicsignaling, and its roles in the regulation of behavior. Together, these and other studies suggest that both Uptake1 and Uptake2 transporters play key roles in regulating monoaminergic neurotransmission and the effects of monoamines on behavior
Organic Cation Transporter 3: A Cellular Mechanism Underlying Rapid, Non-Genomic Glucocorticoid Regulation of Monoaminergic Neurotransmission, Physiology, and Behavior
Corticosteroid hormones act at intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) to alter gene expression, leading to diverse physiological and behavioral responses. In addition to these classical genomic effects, corticosteroid hormones also exert rapid actions on physiology and behavior through a variety of non-genomic mechanisms, some of which involve GR or MR, and others of which are independent of these receptors. One such GR-independent mechanism involves corticosteroid-induced inhibition of monoamine transport mediated by “uptake2” transporters, including organic cation transporter 3 (OCT3), a low-affinity, high-capacity transporter for norepinephrine, epinephrine, dopamine, serotonin and histamine. Corticosterone directly and acutely inhibits OCT3-mediated transport. This review describes the studies that initially characterized uptake2 processes in peripheral tissues, and outlines studies that demonstrated OCT3 expression and corticosterone-sensitive monoamine transport in the brain. Evidence is presented supporting the hypothesis that corticosterone can exert rapid, GR-independent actions on neuronal physiology and behavior by inhibiting OCT3-mediated monoamine clearance. Implications of this mechanism for glucocorticoid-monoamine interactions in the context-dependent regulation of behavior are discussed
Pion-nucleon scattering inside the Mandelstam triangle
We study the third order pion-nucleon scattering amplitude obtained from
heavy baryon chiral perturbation theory inside the Mandelstam triangle. We
reconstruct the pion-nucleon amplitude in the unphysical region by use of
dispersion relations and determine the pertinent low-energy constants by a fit
to this amplitude. A detailed comparison with values obtained from phase shift
analysis is given. Our analysis leads to a pion-nucleon sigma-term of sigma(0)
= 40 MeV based on the Karlsruhe partial wave analysis. We have repeated the
same procedure using the latest solution of the VPI group and find a much
larger value for sigma(0).Comment: 17 pp, LaTeX2e, 4 fig
Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus
Background: Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite.
Results: A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1).
Conclusion: This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes
Organic Cation Transporter 3 (OCT3) Is Localized to Intracellular and Surface Membranes in Select Glial and Neuronal Cells Within the Basolateral Amygdaloid Complex of Both Rats and Mice
Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines
Redundance of -isobar Parameters in Effective Field Theories
It is shown that the off-shell parameters in the interaction Lagrangian of
pions, nucleons, and -isobars are redundant in the framework of
effective field theories. Our results also suggest the necessity of including
the as an explicit dynamical degree of freedom.Comment: 11 pages, RevTex, no figures, a minor error corrected, to appear in
PL
Natural and Synthetic Corticosteroids Inhibit Uptake\u3csub\u3e2\u3c/sub\u3e-Mediated Transport in CNS Neurons
In addition to exerting actions via mineralocorticoid and glucocorticoid receptors, corticosteroids also act by inhibiting uptake2, a high-capacity monoamine transport system originally described in peripheral tissues. Recent studies have demonstrated that uptake2 transporters are expressed in the brain and play roles in monoamine clearance, suggesting that they mediate some corticosteroid effects on physiological and behavioral processes. However, the sensitivity of brain uptake2 to many natural and synthetic corticosteroids has not been characterized. Cultured rat cerebellar granule neurons (CGNs) were previously shown to exhibit corticosterone-sensitive accumulation of the uptake2 substrate1-methyl-4-phenylpyridinium (MPP+). We examined the expression of uptake1 and uptake2 transporters in CGNs, and tested the effects of a variety of natural and synthetic corticosteroids on accumulation of [3H]-MPP+ by these cells. Cultured rat CGNs expressed mRNA for three uptake2-like transporters: organic cation transporters 1 and 3, and the plasma membrane monoamine transporter. They did not express mRNA for the dopamine or norepinephrine transporters, and expressed very little mRNA for the serotonin reuptake transporter. Accumulation of [3H]-MPP+ by CGNs was dose-dependently inhibited by corticosterone and decynium-22, known inhibitors of uptake2. Accumulation of MPP+ was also dose-dependently inhibited, with varying efficacies, by aldosterone, 11-deoxycorticosterone, cortisol, and cortisone, and by the synthetic glucocorticoids betamethasone, dexamethasone and prednisolone, and the glucocorticoid receptor antagonist RU38486. These studies demonstrate that uptake2 in the CNS is inhibited by a variety of natural and synthetic corticosteroids, and suggest that inhibition of uptake2-mediated monoamine clearance may underlie some behavioral and physiological effects of these hormones
- …