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Organic Cation Transporter 3 (OCT3) is localized to intracellular and surface membranes 

in select glial and neuronal cells within the basolateral amygdaloid complex of both rats 

and mice.  

 

Paul J. Gasser1*, Matthew M. Hurley1, June Chan2, and Virginia M. Pickel2 

 

1Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881 

2 Feil Family Brain and Mind Research Institute Weill Cornell Medical College 407 East 61st 

Street, New York, NY 10065 

*Address correspondence to: 
Dr. Paul J. Gasser 

Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 

53201-1881 

 Phone:  414 288-4534 
 FAX:  414 288-6564 
 E-mail: paul.gasser@marquette.edu 
 
  
Abbreviated title:  Subcellular distribution of OCT3 in amygdala 

ACKNOWLEDGEMENTS:  Supported by grants: National Institute on Drug Abuse (DA032895) to 

PJG; National Institute of Mental Health (MH40342), National Institutes of Health (HL09657) 
and National Institute on Drug Abuse (DA04600 and DA005130) to VMP.   

  

Manuscript Click here to download Manuscript Gasser and Pickel OCT3
manuscript - Revised final.docx

Click here to view linked References

http://www.editorialmanager.com/bsaf/download.aspx?id=94598&guid=8452631a-c866-4dc4-8073-1dbdeed1ac9b&scheme=1
http://www.editorialmanager.com/bsaf/download.aspx?id=94598&guid=8452631a-c866-4dc4-8073-1dbdeed1ac9b&scheme=1
http://www.editorialmanager.com/bsaf/viewRCResults.aspx?pdf=1&docID=3605&rev=1&fileID=94598&msid={A420C93F-9D20-47F9-B415-322AFE133B6F}


Abstract 

Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates 

corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, 

dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid 

complex and other brain regions where monoamines are key regulators of emotional behaviors 

affected by stress. However, assessing the contribution of OCT3 to the regulation of 

monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires 

fundamental information about the subcellular distribution of OCT3 expression.  We used 

immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular 

distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. 

OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and 

mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated 

OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of 

synapses, as well on neuronal somata.  In addition to plasma membrane sites, OCT3 

immunolabeling was also observed associated with neuronal and glial endomembranes, 

including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the 

outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial 

perikarya.  The localization of OCT3 to neuronal and glial plasma membranes adjacent to 

synaptic sites is consistent with an important role for this transporter in regulating the amplitude, 

duration, and physical spread of released monoamines, while its localization to mitochondrial 

and outer nuclear membranes suggests previously undescribed roles for the transporter in the 

intracellular disposition of monoamines.  

  



 

Introduction 

A critical step in the regulation of monoaminergic neurotransmission is the clearance of 

released transmitters from the extracellular space, limiting the duration and physical spread of 

monoamine signals, and thus determining the activation of receptors on target cells (Rice and 

Cragg, 2008). Monoamine clearance has been attributed primarily to the high-affinity, Na+ and 

Cl--dependent norepinephrine transporter (NET), dopamine transporter (DAT) and serotonin 

transporter (SERT) (Jayanthi and Ramamoorthy, 2005;Moron et al., 2002;Nemeroff and Owens, 

2004). However, recent studies have shown that organic cation transporter 3 (OCT3), also 

referred to as solute carrier family 22, member 3 (SLC22A3), which mediates the bidirectional, 

sodium-independent, low-affinity transport of all of the major monoamines (Grundemann et al., 

1998;Grundemann et al., 1999;Schomig et al., 2006), is widely distributed in brain (Gasser et 

al., 2009;Vialou et al., 2004). While NET, DAT and SERT are plasmalemmal transporters 

expressed almost exclusively on central neurons, OCT3 is expressed in neurons, glia and 

ependymal cells (Cui et al., 2009;Graf et al., 2013;Vialou et al., 2004), suggesting that this 

transporter contributes to both neuronal and extraneuronal clearance of monoamines.  

In contrast to transport mediated by NET, DAT and SERT, OCT3-mediated transport is 

insensitive to cocaine (Amphoux et al., 2006), and is much less sensitive to inhibition by 

antidepressants (Haenisch and Bonisch, 2010). In addition, OCT3-mediated transport is directly 

and acutely inhibited by corticosterone and synthetic glucocorticoid hormones (Grundemann et 

al., 1998;Hill et al., 2011;Horvath et al., 2003;Horvath and Wanner, 2003). Accumulating 

evidence indicates that OCT3-mediated transport influences extracellular concentrations of 

monoamines in vivo (Amphoux et al., 2006;Gasser et al., 2006;Vialou et al., 2008). We have 

demonstrated that OCT3-mediated transport in ex vivo brain tissue is inhibited by 

concentrations of corticosterone within the physiological stress range (Gasser et al., 2006;Hill et 



al., 2011), and that acute treatment of rats with corticosterone decreases the clearance of 

released dopamine and potentiates the behavioral effects of cocaine (Graf et al., 2013).  

The expression of a stress hormone-sensitive monoamine transporter may have 

particular relevance in limbic brain regions involved in the regulation of anxiety and fear. Indeed, 

mice genetically engineered to lack OCT3 expression exhibit altered levels of anxiety (Vialou et 

al., 2008;Wultsch et al., 2009).  The amygdala, including the basolateral complex (BLA – which 

includes lateral and basal amygdaloid nuclei) and associated nuclei, is particularly important in 

the regulation of anxiety responses, and amygdala function is modulated both by monoamines 

and glucocorticoids. We recently described the distribution of OCT3 immunoreactivity in the rat 

amygdala, with an emphasis on the intercalated cell clusters (Hill and Gasser, 2013).  However, 

the relevant subcellular sites for OCT3-mediated transport in the amygdala are largely unknown, 

and these are of direct relevance to neuronal as well as extraneuronal monoamine transport in 

this brain region (Inazu et al., 2003a). To fill this gap in our knowledge, we examined 

immunofluorescence and electron microscopic immunolabeling of OCT3 in the rodent BLA. 

Most studies of monoamine involvement in regulation of fear and anxiety through the lateral 

amygdala have been done in rats (Fitoussi et al., 2013), but mice are now increasingly used for 

this type of investigation.  Extrapolation from the extensive literature in rats for interpretation of 

the results in mice is highly problematic because of interspecies differences in their behavioral 

and biogenic amine responses to stress (Konstandi et al., 2000;Asan et al., 2005).  Thus, we 

examined the cellular and subcellular distribution of OCT3 in both rats and mice to determine 

potential species-differences in the targeting of OCT3 in this brain region.   

Materials and Methods 

Adult male Sprague-Dawley rats (Harlan Laboratories, Inc., St Louis, MO) and C57BL/6J mice 

(Jackson Laboratory, Bar Harbor, ME) were used for the microscopic analysis of OCT3 

localization. Experimental procedures were carried out in accordance with the National Institutes 

of Health Guidelines for the Care and Use of Laboratory Animals (NIH publication number 80-



23, revised 1996), and approved by the institutional animal care and use committees (IACUC) at 

Marquette University and Weill Medical College of Cornell University.  

Brain fixation and sectioning.   

Light microscopy: The animals were deeply anesthetized by intraperitoneal injection of sodium 

pentobarbital (50 mg/kg) and were transcardially perfused with 0.05 M phosphate-buffered 

saline (PBS) followed by 4% paraformaldehyde in 0.1 M sodium phosphate buffer (PB, pH 7.4). 

Following perfusion, brains were removed and post-fixed in 4% paraformaldehyde solution for 

12 h at 4 °C, and were rinsed twice in 0.1 M PB for 12h. The brains were incubated in 30% 

sucrose in 0.1 M PB at 4 °C for approximately 72 h.  Brains were then blocked into two pieces 

with a cut in the coronal plane at the caudal border of the mammillary bodies (approximately –

5.30 mm bregma) using a rat brain matrix (RBM-4000C, ASI Instruments, Warren, MI, USA). 

The brain tissue was then frozen rapidly in dry-ice-chilled liquid isopentane and stored at –80 °C 

until sectioning.  Forebrain sections (25 µm) including the basolateral amygdala were cut across 

the coronal plane using a cryostat (Leica Biosystems, Buffalo Grove, IL, USA), and stored as 6 

alternate sets of sections in cryoprotectant (30% ethylene glycol (w/w)/20% glycerol (w/w) in 

0.05 M PB, pH 7.4) at –20 °C until immunostaining.   

Electron microscopy: Anesthetized rats were perfused through the ascending aorta with (1) 20 

ml of heparin (1000 U/ml) in saline, (2) 50 ml of 3.8% acrolein (Polysciences, Warrington, PA, 

USA) in a solution of 2% paraformaldehyde in 0.1 M phosphate buffer (PB), and (3) 200 ml of 

2% paraformaldehyde in 0.1 M PB.  Ventricular perfusions in mice employed these same 

solutions at volumes of (1)15 ml, (2) 40 ml and (3) 100 ml, respectively. The aldehyde-fixed 

brains were then removed from the cranium and placed in 2% paraformaldehyde in PB for 30 

min. prior to sectioning on a Leica Vibratome (Leica Microsystems, Bannockburn, IL, USA).  

Coronal sections of 40 m were collected through the rostrocaudal extent of the amygdala as 

defined in a rat (Franklin and Paxinos, 1997; Paxinos and Watson, 1998). 

Antibodies. 



For immunodetection of OCT3, an affinity-isolated antibody (rabbit anti-OCT3, cat # OCT31A, 

Alpha Diagnostics International, San Antonio, TX, USA) raised against an 18-amino acid 

sequence in the large intracellular loop of rat OCT3 (amino acids 313-330:  

HLSSNYSEITVTDEEVSN) was used at a dilution of 1:250 for light microscopic immunolabeling. 

This amino acid sequence is 100% conserved in mouse and rat OCT3, and has no significant 

sequence homology with other OCTs or with any organic cation/carnitine transporters.  The 

specificity of this antibody was confirmed previously in immunoperoxidase and 

immunofluorescence applications (Gasser et al., 2006;Gasser et al., 2009;Lips et al., 

2005;Vialou et al., 2004). For immunodetection of neuron-specific Beta-III tubulin, a monoclonal 

antibody (mouse anti-beta-III Tubulin, cat# ab7751, Abcam, Cambridge, MA, USA) was used at 

a dilution of 1:1200. For immunodetection of glial fibrillary acidic protein (GFAP), a monoclonal 

antibody (mouse anti-GFAP, cat# MAB360, EMD Millipore, Billerica, MA, USA) was used at a 

dilution of 1:3000.  

Immunofluorescence. 

Separate coronal sections (25 µm) containing the BLA were used for combined detection of 

OCT3 and either GFAP or beta-III tubulin. After rinsing in 0.05 M PBS, sections were incubated 

with 0.05 M PBS containing 0.3% Triton X-100, 5% normal donkey serum, and 0.3 M glycine. 

After additional rinses in 0.05 M PBS, sections were incubated for 14-16 h at room temperature 

with primary antibodies diluted in PBS containing 0.1% Triton X-100 and 5% normal donkey 

serum. Sections were rinsed the next day, and incubated for 2 h with fluorophore-conjugated 

secondary antibodies (AlexaFluor594-conjugated donkey anti-rabbit and AlexaFluor488-

conjugated donkey anti-mouse IgG antibodies (1:500; Invitrogen)). Sections were then rinsed 

briefly in 0.1 M sodium phosphate buffer, mounted onto SuperFrost microscope slides, dried 

briefly and coverslipped with Vectashield antifade mounting medium containing DAPI for 

visualization of nuclei (Vector Laboratories). All immunostaining studies were repeated a 

minimum of three times with similar results.  



Photomicrographs were acquired using a Nikon 80i microscope fitted with a Retiga 2000R 

digital camera (QImaging, Surrey, BC, Canada) linked to a computer running NIS Elements-D 

software (Nikon Instruments, Melville, NY, USA).  Color bright field images were captured using 

a liquid crystal RGB color filter (QImaging RGB-HM-S-IR).  

Electron Microscopic Immunolabeling and Data Analysis.  Brain sections were incubated 

for 30 min in a solution of 1% sodium borohydride in 0.1 M PB to remove excess active 

aldehydes prior to processing for immunoperoxidase or immunogold-silver labeling.  

For immunoperoxidase labeling, prepared sections of aldehyde-fixed tissue were incubated 

overnight at room temperature in a 1:400 dilution of a rabbit antiserum against OCT3, which 

was prepared in Tris-saline containing 0.1% bovine serum albumin (BSA). The source and 

characterization of the antiserum are described in the section on light microscopy. Sections 

were then washed in PB and incubated for 30 min in biotinylated donkey anti-rabbit 

immunoglobulin (IgG, 1:200) (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). 

These sections were then incubated for 30 min in Vectastain ABC Elite kit (Vector Laboratories, 

Burlingame, CA). The product was visualized by reaction in 3,3’-diaminobenzadine (DAB, 

Sigma-Aldrich, St. Louis, MO) and hydrogen peroxide.    

For immunogold-silver labeling, tissue sections prepared as described above were 

incubated overnight at room temperature in the primary OCT3 antibody at 1:400 dilution, then 

transferred to 0.01 M PBS.  The sections were then blocked for 10 minutes in 0.8% BSA and 

0.1% gelatin in 0.01 M PBS, and incubated for 2 hours in ultrasmall colloidal gold-labeled goat 

anti-rabbit IgG, (1:50; Electron Microscopic Sciences (EMS; Fort Washington, PA)).  After this 

incubation, the sections were fixed for 10 minutes in 2% glutaraldehyde in 0.01 M PBS to 

enhance the adherence of the bound gold to the tissue, and reacted with a silver solution 

IntenSETMM kit (Amersham, Arlington Heights, IL) for 4-6 minutes.  



The immunoperoxidase- and immunogold-labeled  sections of tissue were post-fixed in 2% 

osmium tetroxide in 0.1 M PB for one hour, followed by washing and dehydration through a 

graded series of ethanol followed by propylene oxide. The sections were incubated overnight in 

a 1:1 mixture of propylene oxide and Epon (Embed 812) (EMS), and then placed in 100% Epon 

for 2 hours prior to flat-embedding between two sheets of Aclar plastic. Ultrathin sections 

through the BLA were cut from the surface of the tissue using a Leica ultramicrotome (Leica 

Microsystems, Bannockburn, IL). Ultrathin sections were placed on grids and counterstained 

with uranyl acetate and lead citrate. A FEI Tecnai electron microscope (FEI, Hillsboro, OR) was 

used for examining sections and capturing digital images. In these images, immunoperoxidase 

labeling was considered to be positive when an electron-dense precipitate was seen in selective 

profiles but absent in adjacent profiles having otherwise similar morphology. Immunolabeled 

structures were separated into categories of dendrites (dendritic shafts and spines), axon 

terminals, small neuronal profiles (mainly unmyelinated axons and spine necks) or glial 

processes, using the nomenclature of (Peters et al., 1991).  Figures were prepared from the 

acquired digital images by initial adjustment of contrast and brightness using Adobe Photoshop 

CS4 and Adobe Illustrator CS6.   

Results 

Immunofluorescence. OCT3 immunoreactive perikarya and punctae were observed 

throughout the BLA in both rat (Fig 1A) and mouse (Fig 2A), with high density in the intercalated 

cell groups. In the BLA, OCT3 immunoreactivity was observed in subsets of GFAP-positive (Fig 

1), β-III tubulin-positive (rat, Fig 2A-C), and NeuN-positive (mouse, Fig 2D-F) cell bodies. 

Intense perinuclear OCT3 immunofluorescence signal was observed in most GFAP-positive 

cells (Fig 1). This signal completely overlapped the DAPI-stained nuclei, and was most intense 

in a rim around the nucleus (Fig 1C-H). OCT3-immunoreactive punctae were also observed 

overlapping or immediately adjacent to GFAP-immunoreactive processes (Fig 1C-D, F-G). 



Perinuclear OCT3-immunoreactivity was also observed in subsets of GFAP-negative (Fig 1B), 

β-III tubulin-positive (Fig 2B-C), and NeuN-positive (Fig 2E-F) cell bodies, but the perinuclear 

staining in these cells was generally less intense than that observed in GFAP-positive cells. In 

β-III tubulin-positive cell bodies, β-III tubulin immunoreactivity was observed in perikarya and 

fine processes, and was absent from the nucleus (Fig 2C). In these cell bodies, OCT3-

immunoreactive punctae were observed both over nuclei and over β-III tubulin-positive 

processes. In NeuN-positive cells, intense NeuN immunoreactivity was observed in nuclei, with 

less intense immunoreactivity in the cytoplasm. In these cells, OCT3-immunoreactivity was most 

intense in a rim around the nucleus, but less intense, punctate immunoreactivity was also 

observed over the cytoplasm.  

Electron microscopic localization of OCT3 in glial and neuronal processes. 

OCT3 was varyingly localized in glial and neuronal (dendritic and axonal) processes in the 

BLA of both rat and mouse (Table 1). In glial processes, the OCT3 immunoperoxidase was 

most prevalent along the plasma membrane, but also was distributed diffusely around, or 

associated with, endomembranes within cytoplasmic compartments (Fig. 3). OCT3-

immunoreactive glial processes were frequently observed in close proximity to asymmetric 

axodendritic (Fig. 3A) and axospinous synapses (Fig. 3B). OCT3 immunoreactivity was also 

seen in filamentous glial processes in contact with unlabeled axon terminals without 

recognizable synaptic specializations (Fig. 3C) or with small unlabeled axons (Fig. 3D).   

OCT3-labeled dendritic profiles (dendritic shafts and spines) comprise approximately 25% 

of the immunoreactive processes in the BLA (Table 1). In dendritic shafts, the OCT3 

immunoperoxidase reaction product was intensely localized to cytoplasmic endomembranes 

(Fig. 4A), and to transitional zones between mitochondrial and plasma membranes that also 

appeared to express OCT3-immunoreactivity (Fig. 4C).  In these dendrites the plasmalemmal 

immunoreactivity was partially obscured by the intense cytoplasmic labeling. However, in small 



dendrites (Fig. 4B) and dendritic spines (Fig. 3B, 4B-C and F, and 5 F-H), OCT3 

immunoperoxidase reaction product was clearly evident along the postsynaptic membranes.  

Immunogold labeling revealed OCT3 immunoreactivity distinctly localized to dendritic plasma 

membranes (Fig. 4D) and mitochondrial surfaces (4E). 

Axonal profiles (axons and axon terminals) comprised the greatest percentage of all OCT3-

labeled processes in the BLA neuropil (Table 1). Many unmyelinated as well as a few 

myelinated axons contained aggregates of OCT3 immunoreactivity associated with vesicle-like 

endomembranes (Fig. 5A).  The OCT3 immunoperoxidase labeling also was frequently 

localized to clusters of small vesicles in axon terminals forming symmetric synapses with 

neuronal somata (Fig. 5B) and dendrites (Fig. 5C). In these axon terminals, immunoperoxidase 

OCT3 immunoreactivity was faintly seen along portions of the plasma membrane contacted by 

opposing axons that were unlabeled and usually without recognizable synaptic junctions within 

the plane of section. Other similarly non-synaptic terminals were opposed to unlabeled 

dendrites (Fig. 5D) and dendritic spines (Fig. 5E), and these terminals showed intense OCT3 

labeling on membranes of large vesicles. The labeled terminals in contact with dendritic spines 

were interposed at asymmetric excitatory-type synapses, a site known to be occupied by 

dopamine axons (Pinto and Sesack, 2008; Muller et al., 2009;(Pinard et al., 2010).  OCT3-

immunoreactivity was also localized to isolated vesicles and/or presynaptic membranes in axon 

terminals forming asymmetric synapses with dendritic spines (Fig. 5F-H).  

Electron microscopic localization of OCT3 in non-neuronal cell bodies.  Electron 

microscopy confirmed the localization of OCT3 immunoreactivity in perikarya of astrocytic glial 

cells in the BLA, and further demonstrated the presence of OCT3 labeling in non-astrocytic glial 

cells as well as in endothelial cells in the BLA of both rat and mouse (Fig. 6). The astrocytic 

perikarya were morphologically distinguished from oligodendrocytes and microglia by their 

enrichment in bundles of intermediate filaments and large round nuclei lacking the dense rim of 



chromatin commonly seen in the non-astrocytic glia (Peters et al., 1991). In all glial cells, the 

OCT3 immunoreactivity was intensively and unevenly localized to the outer nuclear membrane 

and associated perinuclear cytoplasm (Fig. 6). Aggregates of peroxidase reaction product were 

often seen on the cytoplasmic surface of the nuclear membrane opposed to mitochondria or 

endomembranes in the region of the Golgi cisternae (Fig. 6A and D). Other cytoplasmic 

compartments of glial cells were largely without OCT3 immunoreactivity except in regions where 

there was proximity between the nuclear membranes and plasma membranes showing an 

irregular contour encasing nearby axonal or dendritic profiles (Fig, 6A). These neuronal profiles 

included axon terminals forming asymmetric excitatory-type synapses. Non-astrocytic glial cells 

containing OCT3 immunoreactivity were frequently located near small capillaries and arterioles 

of blood vessels and myelinated axons (Fig 6B-D).  Capillary endothelial cells showed intense 

cytoplasmic labeling for OCT3 on the luminal and abluminal surface contacted by unlabeled 

astrocytic end-feet on the blood vessel (Fig. 6B). 

Electron microscopic OCT3 localization in neuronal somata.  Electron microscopy showed 

intense OCT3 immunoperoxidase labeling and more sparse immunogold labeling of nuclear 

membranes in neuronal somata (Figs 7 and 8).  The nuclear membranes were associated with 

round and unindented (Fig. 7A), or heavily indented nuclei (Fig. 7B), which are typical of 

pyramidal cells and interneurons, respectively, in the BLA of both rat and mouse.  The most 

prominent labeling of nuclear membranes was seen in regions near the Golgi apparatus, where 

there appeared to be continuity between the nuclear envelope and trans-Golgi cisternae (Fig. 

7B). In addition, however, the OCT3-immunoreactivity was localized to discrete segments of the 

plasma membrane and associated membrane cisternae in somata (Fig. 7D, 8A). The somata 

containing OCT3 received many symmetric, inhibitory-type synapses from axon terminals with 

or without detectable OCT3 immunoreactivity. These cells were also in direct contact with non-

synaptic surfaces of axon terminals forming asymmetric excitatory-type synapses typical of 



glutamatergic neurons (Fig. 7B). In addition the plasmalemmal and endomembrane OCT3 

immunoreactivity was sometimes seen on surfaces opposed by unlabeled glial profiles (Fig. 

7D). The labeled endomembranes were contiguous with a cytoplasmic network of membranes 

extending from the plasma to nuclear membranes (Fig. 7A).  

Discussion 

This study is the first to examine the subcellular localization of OCT3 in any tissue, and the 

first to explore its spatial relationship to synaptic structures in the brain. Consistent with previous 

studies, our immunofluorescence studies demonstrated OCT3 expression in both neurons and 

astrocytic glial cells (Cui et al., 2009;Inazu et al., 2003a;Takeda et al., 2002;Yoshikawa et al., 

2013). The electron microscopic immunolabeling provides new evidence for the selective 

plasmalemmal and cytoplasmic localization of OCT3 immunoreactivity in glial, and both pre- and 

post-synaptic neuronal, processes in the BLA. This labeling also shows substantial localization 

of OCT3 to nuclear membranes and endomembrane systems, including vesicular structures and 

mitochondria, in both neuronal and glial perikarya. Together, these findings further our 

understanding of the cellular sites and mechanisms involved in the high-capacity, 

corticosterone-sensitive monoamine transport mediated by OCT3.  They suggest that OCT3 not 

only contributes to the clearance of extracellular monoamines, but also plays a role in their 

intracellular disposition and action.  

Methodological Considerations: The observed light and electron microscopic distributions of 

OCT3 immunoreactivity in both species was similar using multiple labeling methods which differ 

in their sensitivity and resolution.  Immunoperoxidase is the primary method of choice for our 

ultrastructural analysis because of its greater sensitivity when compared with immunogold 

methods.  Though the peroxidase reaction product is diffuse, and thus limits the accuracy with 

which subcellular localization can be attributed, the greater sensitivity of this method allows a 

more complete assessment of the cellular and subcellular sites of enrichment.  Profiles were 

considered immunolabeled when they contained one or more gold particles or a peroxidase 



reaction product with an electron density greater than that seen in nearby profiles. The validity 

of considering small profiles with only one immunogold particle as specifically labeled has been 

established for other neurotransmitter receptors (Garzon and Pickel, 2006;Hara et al., 2006). 

However, the method is dependent on first establishing that there are a minimal number of 

particles overlying myelin and other tissue elements not known to express the antigen of interest 

(Wang et al., 2003). In the present study, this criterion was met for the immunogold labeling of 

OCT3.  However, the low density of immunogold particles may have resulted in many false 

negatives and an underestimation of the number of neuronal and glial profiles that express 

OCT3. To minimize the false-negative data resulting from inadequate penetration of 

immunoreagents, electron microscopic images were collected exclusively from the tissue-plastic 

interface in sections subjected to a rapid freeze-thaw cycle prior to immunolabeling to enhance 

penetration.  With these precautions, the immunoperoxidase and immunogold-silver methods 

used in our study showed a remarkably similar distribution of OCT3 at sites of greatest 

abundance such as the outer nuclear and mitochondrial membranes.  

OCT3 is localized to plasma membranes of glial processes, axonal and dendritic profiles, 

and neuronal somata.   

The localization of OCT3 to plasma membranes of both neurons and glia is consistent with 

previous studies demonstrating expression of the transporter in astrocytes (Cui et al., 2009) and 

neurons (Graf et al., 2013;Hill and Gasser, 2013;Vialou et al., 2004), and with its previously 

described role as a transporter mediating the uptake of extracellular monoamines (Grundemann 

et al., 1998). The results provide new insight into the sites at which the transporter may mediate 

the uptake of monoamines and other substrates. They suggest the intriguing possibility that 

OCT3 can contribute to the clearance of extracellular monoamines by pre- and post-synaptic 

neurons, and by astrocytic and non-astrocytic glia.  The findings are consistent with an 



important role of the transporter in regulating the amplitude, duration, and physical spread of 

extracellular monoamines in the amygdala.   

Axonal profiles 

The prevalence of OCT3-immunolabeling on axons, compared with dendritic or glial 

profiles, suggests important roles for OCT3 in presynaptic mechanisms that may include the 

homo- and/or hetero-synaptic uptake and clearance of monoamines in the BLA. The prominent 

OCT3 labeling in many small unmyelinated axons and axon-terminals that were either without 

recognizable synapses or formed either symmetric or asymmetric synapses is consistent with 

the known extrinsic sources and diverse morphology of the monoaminergic innervation in the 

BLA (Li et al., 2002). Many of these terminals contained loosely packed small clear and large 

dense core vesicles, features shared by many noradrenergic terminals (Asan, 1998;Li et al., 

2002). In addition, the membranes of these vesicles were often rimmed with OCT3 

immunoreactivity, a pattern similar to that reported for NET immunoreactivity in noradrenergic 

terminals in the amygdala (Zhang et al., 2013). Together, these observations suggest that 

presynaptic reuptake mechanisms include both high-affinity, low-capacity, NET-mediated, and 

low-affinity, high-capacity, OCT3-mediated components.   

OCT3-immunoreactivity was also observed in axon terminals containing densely packed 

small clear vesicles, which often formed symmetric synapses typical of parvalbumin-containing 

GABAergic interneurons on adjacent somata (Muller et al., 2006), Another group of OCT3-

labeled axon terminals with densely packed vesicles formed asymmetric synapses on spine 

heads, which are typical of glutamatergic terminals in the BLA (Gan et al., 2014). Previous 

studies have demonstrated that monoamines exert potent modulatory influence over both 

GABAergic (Chu et al., 2012;Jiang et al., 2005;Jiang et al., 2009), and glutamatergic (Ferry et 

al., 1997;Jiang et al., 2005;Rosenkranz and Grace, 2002) neurotransmission in this region.  

Thus, depending on the identity of OCT3-expressing terminals, OCT3-mediated clearance may 



regulate the extent to which these monoamines can modulate GABAergic or glutamatergic 

neurotransmission.   

Dendritic profiles 

OCT3 immunoreactivity was also observed in neuronal somata and dendrites, many of 

which had the morphological features of pyramidal cells, the primary targets of dopaminergic 

inputs in the BLA (Muller et al., 2009).  These neurons are among those that receive 

dopaminergic input on their smaller distal dendrites (Muller et al., 2009).  However, other OCT3 

labeled somatodendritic profiles showed morphological features of inhibitory interneurons, some 

of which are known recipients of both dopamine (Pinard et al., 2008) and serotonin inputs in this 

brain region (McDonald and Mascagni, 2007), and which provide numerous inhibitory-type 

synapses on somata of pyramidal neurons in the cortical-like BLA (Muller et al., 2006).  These 

observations are consistent with a role for OCT3 in regulating monoaminergic influences over 

excitatory and inhibitory neurotransmission in the BLA.   

Glial processes   

The localization of OCT3 immunoreactivity to astrocytic processes is consistent with 

previous studies demonstrating OCT3 expression and function in rat and human astrocytes in 

vivo and in culture (Cui et al., 2009;Inazu et al., 2003a;Streich et al., 1996). The glial distribution 

of OCT3 and known glial expression of SERT and NET (Inazu et al., 2001;Inazu et al., 2003b) 

suggest that monoamine clearance by brain astrocytes consists of Uptake1- and Uptake2-

mediated components. The observation that OCT3-expressing glial processes ensheathe 

axospinous and axodendritic synapses further suggests involvement of the transporter in 

regulating monoamine signaling at these sites. Understanding the precise role of OCT3 in 

regulating monoaminergic neurotransmission in these areas will require additional studies 

examining the localization of OCT3 with respect to monoamine receptors and other 

transporters.  



OCT3 is highly expressed on nuclear membranes of astrocytic glia and morphologically 

diverse neurons in the BLA.  

OCT3 immunoreactivity was densely distributed along outer portions of nuclear membranes in 

many neurons and glial cells.  Some nuclear membrane labeling likely represents OCT3 not yet 

trafficked to plasma membrane sites where it will ultimately function.  However, the dense 

labeling of the nuclear membrane, coupled with the paucity of endoplasmic reticulum and Golgi 

labeling in most cells, suggests that the nuclear membrane is also a functional site for the 

transporter, and that OCT3 may be actively involved in the transport of monoamines into or out 

of the lumen of the nuclear envelope. Consistent with this possibility, serotonin (Csaba and 

Kovacs, 2006) and norepinephrine (Buu et al., 1993) have previously been detected in the 

nuclear compartment, and adrenergic receptor binding (Buu et al., 1993) and immunostaining 

(Aoki et al., 1989) have been localized to nuclear membranes. Indeed, recent studies have 

demonstrated that functional adrenergic receptors are localized to inner nuclear membranes of 

cardiomyocytes, and that norepinephrine gains access to these receptors via OCT3-mediated 

transport across the outer nuclear membrane (Dahl et al., 2015;Wu et al., 2014;Wu and 

O'Connell, 2015). Thus, in some neurons and astrocytes, nuclear membrane-localized OCT3 

may gate ligand access to monoamine receptors localized to the inner nuclear membrane, 

allowing activation of associated signal transduction cascades.  Alternatively, OCT3 may gate 

the access of monoamine substrates to metabolic enzymes, including monoamine oxidase 

(MAO) and catechol-O-methyltransferase (COMT), both of which have been identified in glial 

and neuronal nuclear envelopes (Muller and Da, 1977;Myohanen et al., 2010;Ulmanen et al., 

1997).   

OCT3 is localized to somatodendritic plasma membranes, endomembranes, and 

mitochondrial membranes in BLA neurons.  

The presence of OCT3 immunoreactivity along mitochondrial membranes in somata and 

dendrites is consistent with involvement of the transporter in neuronal and extraneuronal uptake 



and metabolism of monoamines by mitochondrial MAO and/or COMT (Trendelenburg, 1990). 

OCT3 co-distributes with MAO in peripheral tissues (Verhaagh et al., 2001), and COMT is also 

highly expressed in postsynaptic dendrites and dendritic spines (Karhunen et al., 1995), which 

were the major OCT3-labeled dendritic profiles in the present study.  OCT3-immunoreactive 

mitochondria were often opposed to postsynaptic membranes that were also densely labelled 

for OCT3, suggesting a cellular substrate conducive to membrane transport and rapid 

mitochondrial metabolism of monoamines in postsynaptic dendrites.   

Implications.  

The results from the present study provide new insights into potential roles of OCT3 in 

regulating both the extracellular concentrations of monoamines and their intracellular disposition 

and/or function. Plasmalemmal OCT3 is positioned to influence extracellular monoamine 

concentrations, and therefore monoaminergic regulation of neuronal function, at a variety of 

locations, including astrocytic and pre- and post-synaptic processes.  In addition, OCT3 

localized to endomembranes, including mitochondrial and nuclear membranes, is positioned to 

play key roles in the regulation of monoamine metabolism and may regulate the activation of 

intracellular monoamine receptors.  Because of its sensitivity to acute inhibition by 

corticosteroids, including cortisol and corticosterone, monoamine transport mediated by OCT3 

would be decreased during acute or chronic stress, leading to increases in the duration, 

concentration, and physical spread of monoamine signals. This phenomenon may underlie 

some of the documented interactions between corticosterone and monoamines including 

serotonin (Stutzmann et al., 1998), dopamine (Graf et al., 2013), and norepinephrine (McIntyre 

et al., 2004;Roozendaal et al., 2004;Roozendaal et al., 2006a;Roozendaal et al., 2006b).   

 OCT3 is expressed widely throughout the brain (Gasser et al., 2009;Vialou et al., 2004). 

The results of the present studies show that OCT3 is strategically positioned for involvement in 

regulation of monoaminergic neurotransmission in the amygdala. The localization of a 



corticosterone-sensitive monoamine transporter on axonal, dendritic and astrocytic plasma 

membranes raises interesting questions about the effects of acute and chronic stress on 

monoaminergic neurotransmission and the regulation of behaviors including anxiety and 

emotional learning and memory.  The localization of the transporter to intracellular membranes, 

particularly nuclear and mitochondrial membranes, suggests that OCT3 plays a role in 

previously undescribed processes involved in monoamine metabolism and intracellular 

signaling.  Future studies examining the proximity of OCT3 to monoamine receptors, 

metabolizing enzymes, and other transporters will clarify the roles of this transporter in 

regulating monoamine signaling, brain function, and behavior.  

FIGURE LEGENDS 

Fig. 1 Fluorescence photomicrographs depicting OCT3 (red) and GFAP (green) 

immunoreactivity in coronal sections of the rat (A-E) and mouse (F-H) amygdala. OCT3-

immunoreactive perikarya and punctae are observed throughout the amygdala, with particularly 

high density in the intercalated cell masses (A). B) Dense OCT3 immunoreactivity is localized 

around apparent cell nuclei, including both GFAP-positive, and GFAP-negative cells. C, D, F, G) 

Dense OCT3 immunolabeling is observed surrounding a glial nucleus, and punctate OCT3 

immunoreactivity is observed in the surrounding area, including in apparent glial processes 

(white arrowheads). E, H) DAPI staining of the nucleus of the cells in C-D and F-G, respectively. 

Abbreviations:  BL – basolateral amygdaloid nucleus, ITC – intercalated cell clusters, La – 

lateral amygdaloid nucleus. Scale bar = 200 µm (A), 50 µm (B), 10 µm (C-H). 

Fig. 2 Fluorescence photomicrographs of coronal sections dual-labeled with OCT3 (red) and 

neuron-specific proteins (green) in coronal sections of the rat (A-C) and mouse (D-F) amygdala. 

Neuron-specific markers are β-III tubulin (A-C) or NeuN (D-F).  Boxes in (A) and (D) indicate 

regions shown at higher magnification in B-C, and E-F, respectively. A) OCT3-immunoreactive 

cell nuclei and punctae (red) are apparent throughout the amygdala, with particularly high 



density in the intercalated cell masses. In B and C, OCT3 immunoreactivity is densely localized 

around apparent nuclei of non-neuronal (β-III tubulin-negative) cells (white arrowheads) and 

less densely localized around nuclei of β-III tubulin-positive cells (black arrows). Punctate OCT3 

immunoreactivity is observed in surrounding areas, including in β-III tubulin--immunoreactive 

processes (white arrows). OCT3-immunoreactive nuclei are observed in both β-III tubulin-

immunoreactive (white arrowheads) and -immuno-negative (black arrows) perikarya. D-F) 

OCT3-immunoreactive cell nuclei and punctae (red) are apparent throughout the amygdala. In E 

and F, dense OCT3 immunoreactivity is localized around cell nuclei (white arrowheads and 

black arrows). In F, OCT3-immunoreactive nuclei are observed in both NeuN-immunopositive 

(white arrowheads) and -immunonegative (black arrows) perikarya. Abbreviations:  BL – 

basolateral amygdaloid nucleus, ITC – intercalated cell clusters, La – lateral amygdaloid 

nucleus. Scale bar = 100 µm (A); 50 µm (D); 16.7 µm (B, C, D and E). 

Fig. 3 Electron microscopic images showing black precipitous immunoperoxidase reaction 

product identifying OCT3 immunoreactivity in glial processes in the rat (A-C) and mouse (D) 

BLA. The OCT3 labeling is densely distributed on plasma membranes (arrowheads) and within 

the cytoplasm (thin arrows) of filamentous glial processes imposed at asymmetric axodendritic 

synapses (curved arrows in A and B) and ) and opposed to unlabeled axon terminals (U-te) and 

small axons (Ua) without recognizable synaptic specializations in C and D, respectively. OCT3 

immunoperoxidase labeling is also localized to large dense core vesicles (dcv) in a 

longitudinally cut axon in A, the postsynaptic membrane (chevron) in a dendritic spine receiving 

an asymmetric (curved arrow) from an unlabeled axon terminal in B, and a small axon (la) in C.  

Abbreviations: dcv – dense core vesicle, Ua – unlabeled axon, U-Den= unlabeled dendrite, U-te 

– unlabeled terminal; * = unlabeled glial profile. Scale bars = 500 nm.      

 



Fig. 4 Electron microscopic images showing immunolabeling for OCT3 in dendritic profiles in 

the rat (A, B) and mouse (C-F) BLA.  Immunoperoxidase labeling in A-C is seen as a 

precipitous reaction product localized to discrete segments of the plasma membrane 

(arrowheads), nearby endomembranes (thin arrows), and/or surfaces of mitochondria (m) in 

both species. The immunoperoxidase surface labeling is opposed by unlabeled axons (Ua) and 

axon terminals (U-Te) without defined synaptic junctions.  In D and E, the dendritic surface and 

mitochondrial distribution, respectively, of OCT3 is revealed by immunogold-silver deposits 

(block arrows).  In F, OCT3-immunoperoxidase labeling (arrowhead) is localized to the lateral 

surface of a spine head that receives an asymmetric synapse (curved arrow) from an unlabeled 

axon terminal.  Labeled axons (La) and unlabeled dendrites (U-Den) are also seen in the 

neuropil.  Scale bar = 500 nm in A-C and 100 nm in F. 

Fig. 5 Electron microscopic images showing immunoperoxidase labeling for OCT3 in axonal 

profiles in the rat (A-G) and mouse (H) BLA.  The OCT immunoperoxidase reaction product is 

seen around vesicular organelles (thin arrows) and along select segments of the axonal and 

dendritic plasma membrane (arrowheads) in both species.  In A, OCT3 labeling in seen in small 

unmyelinated axons located in bundles of unlabeled axons (Ua) and in a nearby myelinated 

axon (MA). In B and C, respectively the immunoreactive terminals form symmetric synapses 

(white arrow) with a soma showing intermittent peroxidase labeling along the nuclear membrane 

(black block arrow) and a dendrite (OCT3-De) showing plasmalemmal (arrowheads) labeling. 

The boxed region of the axonal contact is shown at higher magnification in the insert in the 

lower right corner of panel B.  In D and E, the OCT3 immunoreactive axon terminals are without 

defined synaptic junctions, and oppose an unlabeled dendrite (U-De) and dendritic spine (U-

Ds), respectively. In F-H, the OCT3-labeled terminals form asymmetric synapses (curved 

arrows) with dendritic spines that are OCT-3 labeled (L-Ds) or unlabeled (U-Ds). Abbreviations: 

dcv – dense core vesicle, L-Ds – labeled dendritic spine, m – mitochondrion, MA – myelinated 



axon, OCT3-De – OCT3-labeled dendrite, Ua – unlabeled axon, U-Den – unlabeled dendrite, U-

te – unlabeled terminal; dcv=dense core vesicle; unlabeled terminal – U-Te. Scale bars = 500 

nm.  

Fig. 6 Electron microscopic images showing immunoperoxidase labeling for OCT3 in glial cells 

in the rat (A, B) and mouse (C, D) BLA.  The OCT3 immunoreactivity is unevenly distributed 

and often aggregated (block arrows) on portions of the limiting membrane of glial nuclei (G-nu) 

in both species.  These aggregates are located in close proximity and sometimes direct contact 

with membranes of mitochondria (m) near the Golgi lamellae (Go) in astrocytic (A) and non-

astrocytic (B-D) glia that are morphologically distinguished by their respective (1) bundles of 

intermediate filaments (if) and (2) dense rim of chromatin beneath the nuclear membrane.   

Insert in A shows cytoplasmic and nuclear OCT3 labeling in an apical portion of the astrocyte 

enclosing two unlabeled axon terminals that form asymmetric axodendritic synapses (curved 

arrows).  In B and C, the OCT3-labeled glial cells are located near blood vessels (BV).  In B, 

OCT3 immunoreactivity (chevron) is also seen in the cytoplasmic, but not in nuclear (E-nu) 

compartments of the endothelial cell. Astrocytic end feet (*) on the BV in B and a myelinated 

axon (MA) in D are without immunolabeling. Abbreviations: BV – blood vessel, G-nu – glial 

nucleus, Go – Golgi apparatus, E-nu – endothelial cell nucleus, if – intermediate filaments, m – 

mitochondrion, MA – myelinated axon. Scale bar = 500 nm in A, C and 2 μm in inset of A. 

    

Fig. 7 Electron microscopic images showing immunoperoxidase labeling for OCT3 in 

somatodendritic profiles in the rat (A, C, D) and mouse (B) BLA.  The peroxidase reaction 

product (block arrows) is unevenly distributed along a round unindented (A, C) and a heavily 

indented (B) nuclear membrane in somata that also show plasmalemmal (arrow head) and 

endomembrane (thin arrows) distributions of OCT3 immunoreactivity near a mitochondrion (m) 

in A and B. The immunolabeled soma in A is opposed to an unlabeled axon terminal forming an 



asymmetric axospinous synapse (curved arrow in A).  In D, the OCT3 plasmalemmal labeling 

(arrowhead) is located in a proximal dendrite that is opposed by an unlabeled astrocytic process 

(*).  In this dendritic profile, the peroxidase reaction product (thin arrow) is also distributed along 

a vesicle-like cytoplasmic organelle located between the plasma membrane and a nearby 

mitochondrion (m). Abbreviations: Go – Golgi apparatus, m – mitochondrion, Nuc – nucleolus. 

Scale bar = 500 nm in A-C and 100 nm in D. 

Fig. 8 Electron microscopic images showing immunogold labeling for OCT3 in somatic profiles 

in the rat (A, B) and mouse (C) BLA.  Gold-silver deposits (block arrows) are localized to an 

endomembrane beneath the plasma membrane in A and to the outer nuclear envelope near 

vesicular organelles in B. In C, individual gold particles (block arrows) are distributed along the 

entire length of the outer nuclear membrane.  These particles are absent from the cytoplasm 

except for one gold particle that is seen near a mitochondrion (m) in a portion of the soma 

contacted by an unlabeled axon terminal (U-Te). Abbreviations: Go – Golgi apparatus; m – 

mitochondrion, Nuc – nucleus, U-Te – unlabeled terminal. Scale bar = 100 nm in A and 500 nm 

in B and C. 
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Table 1: Percentage of OCT3 labeled processes in the rat and mouse BLA 

 
Glial Processes Dendritic Shafts 

and Spines 

Axons and axon 

terminals 

Unidentifiable 

processes 

Rat       *n= 551 11.4% 22.9% 63.5% 2.2% 

Mouse **n=988 13.3% 26.0% 58.5% 2.2% 

*n= number of labeled profiles in 3,200 μm2 tissue from 3 rats. 

**n= number of labeled profiles in 4,088 μm2 tissue from 2 mice. 

Table 1  Immunolabeling for OCT3 in glial, neuronal, and unidentified glial and/or neuronal 

processes within the rat and mouse BLA.  The neuronal profiles are separately defined as 

postsynaptic dendritic (shafts and spines) and presynaptic (axons and axon terminals) 

compartments.  OCT3-immunolabeled structures in each category are given as a percentage of 

the total OCT3-labeled profiles detected in a square micron tissue area *n and **n for rat and 

mouse, respectively.   

 

Table 1
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