
Marquette University
e-Publications@Marquette
Biomedical Sciences Faculty Research and
Publications Biomedical Sciences, Department of

10-1-2017

Extending the Family: Roles for Uptake2
Transporters in Regulation of Monoaminergic
Signaling
Paul J. Gasser
Marquette University, paul.gasser@marquette.edu

Lynette C. Daws
University of Texas

Accepted version. Journal of Chemical Neuroanatomy, Vol. 83-84 (October 2017): 107-108. DOI. ©
2017 Elsevier B.V. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213086945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/biomedsci_fac
https://epublications.marquette.edu/biomedsci_fac
https://epublications.marquette.edu/biomedsci
https://doi.org/10.1016/j.jchemneu.2017.07.009


 

Marquette University 

e-Publications@Marquette 
 

Biomedical Science Faculty Research and Publications/College of Health 
Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Journal of Chemical Neuroanatomy, Vol. 83-84 (October 2017): 107-108. DOI. This article is © Elsevier 
and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier 
does not grant permission for this article to be further copied/distributed or hosted elsewhere without 
the express permission from Elsevier.  

Extending the family: Roles for uptake2 

transporters in regulation of monoaminergic 
signaling 
 

Paul J. Gasser 

Marquette University, Milwaukee, WI 
Lynette C. Daws 

University of Texas Health Sciences Center, San Antonio, TX 
 

Monoamine transporters determine not only the amplitude, duration, and physical spread of 
released monoamines, but also the intracellular distributionand metabolic fates of their substrates. 
While most studies of monoamine transport have focused on the high-affinity, sodium-dependent 
transporters and, to a lesser degree, on the vesicular monoamine transporters, it has long been 
recognized that another, kinetically and pharmacologically distinct, group of transporters plays a role in 
monoamine clearance. Early studies of catecholamine uptake in cardiovascular tissue described, in 
addition to the high-affinity, cocaine-sensitive, “Uptake1” process (since attributed to 
the norepinephrine transporter(NET)), a lower-affinity, cocaine-insensitive, corticosterone-sensitive 
clearance mechanism, termed “Uptake2”. Since those days, a large body of research has examined the 
role of the Uptake1 family of transporters (also including serotoninand dopamine transporters, SERT 
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and DAT, respectively) in brain, but relatively little is known about the roles of the Uptake2 transporters 
in brain. Key findings, however, indicate that the view of monoamine clearance in the brain, mediated 
exclusively by the high-affinity Uptake1 transporters, is incomplete, and that a better understanding of 
Uptake2 transporters and their contributions to the disposition of monoamines is necessary. These 
findings included: 

a)Identification of a group of transporters, the organic cation transporters (OCT1-3) (Koepsell et 
al., 2007, Grundemann et al., 1998) and the plasma membrane monoamine transporter (PMAT) 
(Engel et al., 2004) as Uptake2 mechanisms; 

b)Demonstration of Uptake2-like, corticosterone-sensitive, transport of serotonin (Baganz et al., 
2008), histamine (Gasser et al., 2006) and dopamine (Graf et al., 2013) in brain; 

c)Brain expression of OCTs and PMAT. This is particularly interesting given that 
Uptake2 transporters, to a greater extent than their Uptake1 counterparts, are multi-specific – 
capable of transporting serotonin, norepinephrine, epinephrine, dopamine, and, unlike any 
other monoamine transporter, histamine and the trace amines (Duan and Wang, 
2010, Grundemann et al., 2003). 

Despite these advances, fundamental questions remain, questions which are still being answered for 
the uptake1 transporters, and are only beginning to be addressed for Uptake2. For example: 

•1. What is the specific role of each Uptake2 transporter in regulating both the extracellular 
concentrations and the intracellular disposition of monoamines? Ex vivo studies have 
demonstrated the substrate specificity of these transporters, but in vivo experiments examining 
the relative contributions of Uptake1 and Uptake2 transporters to monoamine releaseand 
clearance are in their infancy. Substrate specificity and transport efficiency varies among the 
Uptake2 transporters, indicating that each of these transporters may play distinct roles in 
regulating signaling by any particular monoamine. 

2. How are the expression, subcellular localization, and activity of the Uptake2transporters 
regulated? This includes examination of potential effects of development, life experience, 
disease processes, and drug exposure on transporter expression and distribution. 

3. What are the cellular (cell type) and subcellular distributions of each Uptake2 transporter, 
including their spatial relationships to monoamine receptors and the enzymes of monoamine 
metabolism. This information is critical for the development of models describing the 
contribution of these transporters to monoamine signaling. A recent study using immuno-
electron microscopy to examine the subcellular distribution of OCT3 revealed, in addition to the 
expected plasma membrane localization in astrocytes, neurons and endothelial cells, 
unexpected localization of the transporter to mitochondrial and nuclear membranes, 
suggesting novel signaling mechanisms or roles in regulation of metabolism (Gasser et al., 
2017). Along these lines, very recently a role for OCT3 in the transport of epinephrine into 
the Golgi apparatus was shown to be important for activation of Golgi pools of β1-adrenergic 
receptors, and subsequent activation of Gs-cAMP signaling from the Golgi apparatus (Irannejad 
et al., 2017). 
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4. How do the Uptake2 transporters contribute to disease processes, and how might they be 
targeted for therapeutic strategies? A small number of studies have indicated roles for OCT3 in 
treatment-resistant depression (Horton et al., 2013), neurodegenerative disease (Cui et al., 
2009), and in the ability of stress and corticosterone to increase relapse vulnerability in cocaine 
addicts (Graf et al., 2013, McReynolds et al., 2017). 

The answers to these and other questions will allow the integration of Uptake2transporters into 
current models of monoamine clearance, resulting in a more complete understanding of monoamine 
signaling, and may lead to the development of novel therapeutic strategies. 
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