25 research outputs found

    Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS

    Get PDF
    International audienceBACKGROUND: Dendritic cells (DCs) are the sentinels of the mammalian immune system, characterized by a complex maturation process driven by pathogen detection. Although multiple studies have described the analysis of activated DCs by transcriptional profiling, recent findings indicate that mRNAs are also regulated at the translational level. A systematic analysis of the mRNAs being translationally regulated at various stages of DC activation was performed using translational profiling, which combines sucrose gradient fractionation of polysomal-bound mRNAs with DNA microarray analysis. RESULTS: Total and polysomal-bound mRNA populations purified from immature, 4 h and 16 h LPS-stimulated human monocyte-derived DCs were analyzed on Affymetrix microarrays U133 2.0. A group of 375 transcripts was identified as translationally regulated during DC-activation. In addition to several biochemical pathways related to immunity, the most statistically relevant biological function identified among the translationally regulated mRNAs was protein biosynthesis itself. We singled-out a cluster of 11 large ribosome proteins mRNAs, which are disengaged from polysomes at late time of maturation, suggesting the existence of a negative feedback loop regulating translation in DCs and linking ribosomal proteins to immuno-modulatory function. CONCLUSION: Our observations highlight the importance of translation regulation during the immune response, and may favor the identification of novel protein networks relevant for immunity. Our study also provides information on the potential absence of correlation between gene expression and protein production for specific mRNA molecules present in DCs

    Bases moléculaires du tri des protéines membranaires dans les exosomes

    No full text
    MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Translating the anticancer properties of eEF2K

    No full text

    Exosomal sorting of the cytoplasmic domain of bovine leukemia virus TM Env protein

    No full text
    International audienceExosomes are small membrane vesicles that are released into the extracellular compartment as a consequence of fusion of multivesicular endosomes with the plasma membrane. To unravel the molecular basis of protein sorting into exosomes, we have made a chimeric protein containing the cytosolic domain of the transmembrane subunit of the viral Env protein of BLV and the ectodomain of CD8 (CDTM-BLV-CD8). When expressed in K562 cells known to constitutively secrete exosomes, the chimera was found to be very efficiently targeted to the released vesicles. Very interestingly, the cytosolic domain of the Env protein contains peptide motifs potentially recognized by components of the ESCRT machinery that could be related to chimera sorting into the vesicles. Then, quantifying the chimera secretion, we investigated the site of exosome biogenesis in K562 cells using a pharmacological approach. We present different arguments indicating that CDTM-BLV-CD8-containing exosomes are likely formed from a recycling endosomal/TGN compartment
    corecore