1,496 research outputs found

    Unidentifed gamma-ray sources: hunting gamma-ray blazars

    Full text link
    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified gamma-ray sources (UGSs). Despite the large improvements of Fermi in the localization of gamma-ray sources with respect to the past gamma-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-Field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of gamma-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the gamma-ray sources to reognize if there is a blazar candidate within the positional uncertainty region of a generic gamma-ray source. With this new IR diagnostic tool, we searched for gamma-ray blazar candidates associated to the UGS sample of the second Fermi gamma-ray catalog (2FGL). We found that our method associates at least one gamma-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to gamma-ray sources in the 2FGL catalog.Comment: 24 pages, 4 figures, Accepted for publication on the Astrophysical Journa

    Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography

    Get PDF
    By using the Inverted Chirality Columns Approach (ICCA) we have developed an enantioselective UHPSFC method to determine the enantiomeric excess (ee) of (-)-Δ(9)-THC in medicinal marijuana (Bedrocan®). The ee was high (99.73%), but the concentration of the (+)-enantiomer (0.135%) was not negligible, and it is worth a systematic evaluation of bioactivity

    Blazar surveys with WMAP and Swift

    Full text link
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 10−1510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    Dynamic of a lacustrine sedimentary system during late rifting at the Cretaceous‐Palaeocene transition: Example of the Yacoraite Formation, Salta Basin, Argentina

    Get PDF
    The architecture of lacustrine systems is the result of the complex interaction between tectonics, climate and environmental parameters, and constitute the main forcing parameters on the lake dynamics. Field analogue studies have been performed to better assess such interactions, and their impact on the facies distribution and the stratigraphic architecture of lacustrine systems. The Yacoraite Formation (Late Cretaceous/Early Palaeocene), deposited during the sag phase of the Salta rift basin in Argentina, is exposed in world-class outcrops that allowed the dynamics of this lacustrine system to be studied through facies analysis and stratigraphic evolution. On the scale of the Alemania-Met\ue1n-El Rey Basin, the Yacoraite Formation is organized with a siliciclastic-dominated margin to the west, and a carbonate-dominated margin to the east. The Yacoraite can be subdivided into four main \u2018mid-term\u2019 sequences and further subdivided into \u2018short-term\u2019 sequences recording high frequency climate fluctuations. Furthermore, the depositional profiles and identified system tracts have been grouped into two end-members at basin scale: (a) a balanced \u2018perennial\u2019 depositional system for the lower part of the Yacoraite Formation and (b) a highly alternating \u2018ephemeral\u2019 depositional system for the upper part of the Yacoraite Formation. The transition from a perennial system to an ephemeral system indicates a change in the sedimentary dynamics of the basin, which was probably linked with the Cretaceous/Tertiary boundary that induced a temporary shutdown of carbonate production and an increase in siliciclastic supply

    Hands-on Tutorial on a Modeling Framework for Projections of Climate Change Impacts on Health.

    Get PDF
    Reliable estimates of future health impacts due to climate change are needed to inform and contribute to the design of efficient adaptation and mitigation strategies. However, projecting health burdens associated to specific environmental stressors is a challenging task because of the complex risk patterns and inherent uncertainty of future climate scenarios. These assessments involve multidisciplinary knowledge, requiring expertise in epidemiology, statistics, and climate science, among other subjects. Here, we present a methodologic framework to estimate future health impacts under climate change scenarios based on a defined set of assumptions and advanced statistical techniques developed in time-series analysis in environmental epidemiology. The proposed methodology is illustrated through a step-by-step hands-on tutorial structured in well-defined sections that cover the main methodological steps and essential elements. Each section provides a thorough description of each step, along with a discussion on available analytical options and the rationale on the choices made in the proposed framework. The illustration is complemented with a practical example of study using real-world data and a series of R scripts included as Supplementary Digital Content; http://links.lww.com/EDE/B504, which facilitates its replication and extension on other environmental stressors, outcomes, study settings, and projection scenarios. Users should critically assess the potential modeling alternatives and modify the framework and R code to adapt them to their research on health impact projections

    High-redshift blazars through nustar eyes

    Get PDF
    The most powerful sources among the blazar family are MeV blazars. Often detected at z>2z>2, they usually display high X- and \gm-ray luminosities, larger-than-average jet powers and black hole masses ≳109M⊙\gtrsim 10^9 M_{\odot}. In the present work we perform a multiwavelength study of three high redshift blazars: 3FGL J0325.5+2223 (z=2.06z=2.06), 3FGL J0449.0+1121 (z=2.15z= 2.15), and 3FGL J0453.2−-2808 (z=2.56z=2.56), analysing quasi simultaneous data from GROND, \swift-UVOT and XRT, \nustar, and \fermi-LAT. Our main focus is on the hard X-ray band recently unveiled by \nustar~(3−-79 keV) where these objects show a hard spectrum which enables us to constrain the inverse Compton peak and the jet power. We found that all three targets resemble the most powerful blazars, with the synchrotron peak located in the sub-millimeter range and the inverse Compton peak in the MeV range, and therefore belong to the MeV blazar class. Using a simple one zone leptonic emission model to reproduce the spectral energy distributions, we conclude that a simple combination of synchrotron and accretion disk emission reproduces the infrared-optical spectra while the X-ray to \gm-ray part is well reproduced by the inverse Compton scattering of low energy photons supplied by the broad line region. The black hole masses for each of the three sources are calculated to be ≳4×108M⊙\gtrsim 4 \times 10^{8} M_{\odot}. The three studied sources have jet power at the level of, or beyond, the accretion luminosity.Comment: 4 figures, 3 tables, accepted for publication in Ap

    Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain)

    Get PDF
    International audiencePaleozoic rocks in the Cantabrian Zone, and the Variscan foreland fold-and-thrust belt on the Iberian Peninsula have been affected by a sequence of diagenetic to epizonal thermal events. Late- to Post-Variscan hot fluid circulation caused a large-scale burial dolomitization and ore mineralization, mostly in Cambrian and a Lower to Middle Carboniferous carbonate sucessions. The goal of this study is to analyze and compare the temperatures experienced by the carbonate precursor rocks, as well as the under- and over-lying siliciclastic ambient rocks to gain a better understanding of the thermicity of dolomitization. These temperatures are evaluated based on published paleothermal datasets combined with new data obtained from Rock–Eval pyrolysis and vitrinite reflectance analysis of Carboniferous rocks rich in organic matter. The overall results indicate that reworking of detrital sediments in synorogenic ambient siliciclastics results in an anomalously high thermal maturity recorded by bulk rock techniques such as illite crystallinity and Rock–Eval pyrolysis. In situ VR-derived paleotemperatures recorded by ambient siliciclastic rocks appear to be higher compared to CAI-derived temperatures for carbonate precursor rocks. This variation in thermal maturity is likely related to the analytical techniques used to obtain CAI and VR data, and the empirical equations applied to calculate corresponding paleotemperatures. Conodont fragments were not as sensitive compared to vitrinite, and the color alteration process could have suffered from hydrothermal alteration. A secondary cause might be a different response to mechanical deformation between siliciclastic and carbonate units during the Variscan and post-Variscan geodynamic evolution of the study area. Rigid precursor carbonate units experienced fluid circulation mainly along distinct and spaced fracture zones, creating fracture-related dolomite geobodies and ore mineralization. Soft ambient siliciclastic rocks experienced more diffuse fluid circulation and heat dissipation. The different paleothermometry datasets compiled for the study area indicate that the fluids circulating during Late- to Post-Variscan times, with associated fracture-related dolomitization and ore mineralization in carbonate precursors, are hydrothermal. The highest paleotemperatures were recorded in ambient and precursor rocks in the highly tectonized northern part of the study area, where several thrusts and faults allowed intense fluid circulation. Positive temperature anomalies within the precursor carbonates correlate well with the occurrence of dolomite geobodies and ore mineral deposits. Such anomalies could thus be used as an exploration tool for hydrothermal dolomite bodies in analog sub-surface settings
    • …
    corecore