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Abstract 1 

Reliable estimates of future health impacts due to climate change are needed to inform 2 

and contribute to the design of efficient adaptation and mitigation strategies. However, 3 

projecting health burdens associated to specific environmental stressors is a challenging 4 

task, due to the complex risk patterns and inherent uncertainty of future climate 5 

scenarios. These assessments involve multi-disciplinary knowledge, requiring expertise 6 

in epidemiology, statistics, and climate science, among other subjects. Here, we present 7 

a methodological framework to estimate future health impacts under climate change 8 

scenarios based on a defined set of assumptions and advanced statistical techniques 9 

developed in time-series analysis in environmental epidemiology. The proposed 10 

methodology is illustrated through a step-by-step hands-on tutorial structured in well-11 

defined sections that cover the main methodological steps and essential elements. Each 12 

section provides a thorough description of each step, along with a discussion on 13 

available analytical options and the rationale on the choices made in the proposed 14 

framework. The illustration is complemented with a practical example of study using real-15 

world data and a series of R scripts included as Supplementary Digital Content, which 16 

facilitates its replication and extension on other environmental stressors, outcomes, 17 

study settings, and projection scenarios. Users should critically assess the potential 18 

modelling alternatives and modify the framework and R code to adapt them to their 19 

research on health impact projections.  20 
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Background 33 

Climate change is one of the most important environmental challenges that humanity will 34 

face in the coming decades. Quantifying future health burdens associated to global 35 

warming is therefore a major priority for the scientific community, as attested by the 36 

increasing number of publications on health impact projections. Several studies have 37 

focused on direct impacts of environmental stressors, such as non-optimal temperature 38 

and air pollution.1–5  Generally, these projection studies follow a common methodological 39 

scheme. The basic idea consists in applying risk functions on simulated future exposure 40 

distributions generated by climate change models under specific emissions scenarios. 41 

However, this scheme entails important methodological challenges due, for instance, to 42 

the complex patterns of health risks associated with environmental stressors, the 43 

inherent uncertainty of potential future climate change processes, and the set of (rarely 44 

stated) assumptions.6 A wide variety of data sources, statistical approaches and 45 

assumptions have been applied so far, as summarized and discussed in previous 46 

reviews.6–8 However, a structured illustration that covers the important steps and discuss 47 

the most recent statistical developments is still lacking. 48 

Here, we illustrate a methodological framework to estimate health impact projections 49 

under climate change scenarios, built on clearly defined assumptions and state-of-the-50 

art statistical methodologies developed in time-series analysis in environmental 51 

epidemiology. This contribution extends a methodology previously presented to project 52 

temperature-related excess mortality in climate change scenarios.5,9 The proposed 53 

framework is illustrated through a hands-on tutorial, structured in well-differentiated steps 54 

that cover each of the methodological issues and the essential elements. Each section 55 

provides a detailed description of the methodology and a discussion on the potential 56 

assumptions and limitations, compared to other available choices. The text is 57 

complemented with a practical illustration of a projection study using real-world data, and 58 

a series of R scripts included as Supplementary Digital Content, with updated versions 59 

available in the personal website and GitHub repository of the last author. The 60 

methodological framework and R code can be modified and adapted to a broad range of 61 

health impact projection studies, optionally assessing different environmental stressors 62 

and health outcomes, and with different study settings. 63 

 64 

Illustrative example 65 

The practical example consists of a projection study on temperature-related mortality 66 

impacts in the city of London, United Kingdom. The dataset includes observed daily 67 



mean temperature and total number of deaths in London between 1990 and 2012. This 68 

is part of the large database collected within the Multi-City Multi-Country (MCC) network 69 

(http://mccstudy.lshtm.ac.uk/), and has been previously used as example in other 70 

manuscripts.10 We complement these observed data with daily-modelled temperature 71 

series for historical (1950-2005) and future (2006-2100) periods, projected under 72 

scenarios defined within the Coupled Model Intercomparison Project Phase 5 of 73 

Intergovernmental Panel on Climate Change (IPCC).11 Climate data was obtained, 74 

processed and made available by the Inter-Sectoral Impact Model Intercomparison 75 

Project (ISI-MIP, https://www.isimip.org/).12 Further details on the modelled data is 76 

provided in the Section 2 of the tutorial. 77 

 78 

Tutorial on the modelling framework 79 

1. Estimation of exposure-response associations 80 

One critical step in health impact projection studies is to appropriately define the 81 

relationship between the exposure to the environmental stressor of interest and the 82 

health outcome. While this information can be based on association estimates reported 83 

in the literature,13,14 this often requires strong assumptions due to extrapolation across 84 

geographical areas, and simplification of usually complex relationships.  85 

A more appropriate approach is to directly estimate the relationship using actual 86 

epidemiological data, for which several statistical methods are available.15,16 Among 87 

these, time series analysis using aggregated data has been shown to be ideal to assess 88 

short-term associations in environmental epidemiology,17 and often applied in climate 89 

change projection studies.1,18,19  90 

A representation of the standard time series regression model is provided by the 91 

following equation:  92 

log[�(��)] = � + �(��; �) + �(�; 	�) + ∑ ℎ�(���; ��)����      (1) 93 

where typically the outcome �� corresponds to daily counts assumed to follow a Poisson 94 

distribution with overdispersion, the function �(��; �) specifies the association with the 95 

environmental exposure of interest � at time �, �(�; 	�) represents the baseline trend 96 

which captures the effect of confounders changing slowly over time (i.e., seasonal and 97 

long-term trends), and ℎ�(���; ��) models the contribution of other confounders varying 98 

on a daily basis.  99 

The exposure-response association can be modelled using different types of function �, 100 

ranging from simple indicators for extreme exposure events, to linear or linear-threshold 101 



shapes, to distributed lag non-linear models (DLNMs) representing complex exposure-102 

lag-response surfaces.20 The selection of the function depends on the environmental 103 

stressor, for instance measured as a continuous exposure (e.g., temperature, rain fall) 104 

or defined extreme event (e.g., heat wave, floods), and the assumed dependency with 105 

the health outcome. As shown below, wrong assumptions on the shape of the 106 

dependency can introduce important biases in estimates and projections. 107 

In our example, the environmental stressor and the outcome corresponds to historical 108 

series of daily mean temperature and death counts (� !" and # !"). Our main choice for 109 

the exposure-response function �(��)	is represented by a DLNM through a bi-110 

dimensional cross-basis term, using flexible natural cubic spline functions to model both 111 

exposure-response and lagged-response dimensions, accounting for 21 days of lag, 112 

following previous work.10 As further described in Section 4 of this tutorial, the choice of 113 

natural splines allows the log-linear extrapolation of the function beyond the boundaries 114 

of the observed series, a step needed to project the risk using the modelled temperature. 115 

Figure 1A shows the resulting 3-D plot of the estimated exposure-lag-response 116 

association, and Figure 1B represents the overall cumulative exposure-response 117 

association across up to 21 days of lag. As expected, we observe a non-linear 118 

temperature-mortality relationship, with increases in relative risk (RR) above and below 119 

the minimum mortality temperature (�$$) that correspond to heat and cold associations, 120 

respectively. At the same time, risks are distributed differently across time, with 121 

immediate heat-mortality and more delayed cold-mortality associations (Figure 1A). 122 

Alternative models with different specifications of the exposure-response association, 123 

such as linear or double-threshold parameterizations, are shown in Figure 1C. While 124 

simpler, however these choices seem less ideal for modelling the mortality risk of non-125 

optimal temperature, highlighting the importance of the selection of suitable functions to 126 

represent the association of interest, and the potential bias of inappropriate 127 

simplifications. 128 

 129 

2. Projected temperature and mortality series 130 

Two additional essential elements needed in health impact projection studies are the 131 

information on future climatic and population scenarios.  132 

Data on future distribution of the environmental stressor (e.g., temperature, precipitation, 133 

air pollution levels) are commonly based on specific scenarios that account for changes 134 

in multiple and often inter-related factors. For instance, socioeconomic and technological 135 

changes, population growth and land use changes can affect pathways of greenhouse 136 



gases emissions or atmospheric concentrations of other pollutants, which in turn will 137 

determine trends in global warming and potential levels of specific environmental 138 

exposures.21 Under each scenario, these trends can be generated from general 139 

circulation models (GCMs), which offer projections of future conditions based on specific 140 

and simplified assumptions.21  To have a better representation of future trends, the usual 141 

approach is to combine impact estimates obtained either using more than one model per 142 

scenario or using ensemble members output from multiple runs of the same climate 143 

model, but with different initial conditions. 6,7 144 

In our worked example, we applied the first approach by including modelled temperature 145 

data from 5 different GCMs for two climate change scenarios, defined as representative 146 

concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5).22,23  Figure 2 shows the 147 

temporal trends in temperature for the historical (1971-2005) and future (2006-2100) 148 

periods projected in London under the two scenarios, depicted as GCM-ensemble 149 

averages (solid lines) and associated variability (shaded areas). As discussed later in 150 

Section 6, the availability of exposure trends from multiple models can be used to 151 

determine the related uncertainty of the projected health impacts.  152 

Projection exercises also depend on representations of future mortality trends, 153 

determined by the demographic structure and outcome baseline rates. Data on these 154 

population scenarios can be built following different approaches based on the adopted 155 

assumptions. The simplest procedure consists in assuming that populations and 156 

outcome rates will remain constant in the future, thus isolating the climate effect from 157 

other important trends.24–26 However, other studies relied on population projections 158 

derived from predictive models under varying levels of future fertility, mortality and 159 

migration,27–29 a procedure that requires additional assumptions.  160 

In our example, we illustrate an application of the former method. First, we compute an 161 

annual series of total mortality counts as the average for each day of the year from 162 

observed daily deaths, thus keeping into account the seasonal structure of the observed 163 

mortality series (Figure 3). The annual series is then replicated along the whole 164 

projection period. The extension to more complex scenarios requires the derivation of 165 

age-specific mortality series, obtained using projection methods that model changes in 166 

the demographic structure and baseline rates, as further explained in Section 7 of this 167 

tutorial. 168 

 169 

3. Downscaling and calibration  170 



Climate simulations of historical periods usually show systematic deviations from the 171 

real-world observations. This can be explained by real differences due to the different 172 

geographical resolution of the data (gridded versus point-source), or to biases due to 173 

poor performance of climate models, occurring in areas with sparse information from 174 

meteorological stations. These deviations should be carefully considered in climate 175 

change projection studies, as the predicted impacts will depend on the alignment of 176 

observed and modelled series.30,31 Corrections of biases related to these two aspects 177 

have been defined separately as downscaling and calibration, although in most cases 178 

they rely on similar analytic procedures. Downscaling refers to the process of obtaining 179 

location-specific climate information from global or regional models that provide data at 180 

a larger geographical resolution, and is based on either dynamical or statistical methods.7 181 

Conversely, calibration is a more general concept of re-aligning two series of data, in this 182 

case observed and modelled series. 183 

Bias correction methods have been proposed for both statistical downscaling and 184 

calibration, and encompass various different techniques with varying degree of 185 

complexity, ranging from basic statistical approaches (i.e., use of additive or 186 

multiplicative corrections, shifted distribution), to more complex statistical procedures.31 187 

However, limited evidence exists about the potential impact of the choice of method on 188 

the estimated projections. 189 

In the present tutorial, the model outputs from the GCMs are firstly downscaled through 190 

bi-linear interpolation at a 0.5°×0.5° spatial resolution and linear interpolated by day of 191 

the year. The resulting series are then calibrated with the observed data using the bias-192 

correction method developed within ISI-MIP.32 This ensures that the trend and variability 193 

of the original data are preserved by adjusting the cumulative distribution of the simulated 194 

data to the observed one. In detail, the monthly variability and mean are corrected only 195 

using a constant offset or multiplicative correction factor that corrects for long-term 196 

differences between the simulated and observed monthly mean data in the historical 197 

period.32 Figure 4 shows a comparison between the modelled series from a specific GCM 198 

(�$ %, green area and line), and the observed series (� !", black area and line), in terms 199 

of their overall and cumulative distribution (left and right panels, respectively). It can be 200 

noted that the modelled series is shifted towards colder ranges, likely for the reasons 201 

mentioned above. As discussed, this would create a bias in the future projections. The 202 

bias-correction procedure described above calibrates the modelled series (�$ %∗ , green 203 

dashed line), re-aligning it to the observed one (Figure 4, right panel).  204 

 205 



4. Extrapolation of exposure-response curves 206 

Risk estimates obtained over historical periods do not automatically apply to future 207 

scenarios, due to several reasons. For instance, it is possible that the estimated 208 

exposure-response association will be different in the future, due to for example 209 

adaptation or changes in vulnerability of the population. However, even when assuming 210 

no changes in risk, the future distribution of a specific environmental stressor is likely to 211 

be different to that observed in the present days, and can extend further than the region 212 

of the estimated exposure-response curve. Thus, we need to perform an additional step 213 

consisting in the extrapolation of the exposure-response beyond the observed 214 

boundaries. This, however, implies the adoption of additional assumptions on the 215 

hypothetical shape of the association over the unobserved range.  216 

As shown in Figure 5 (top panel), a viable method is based on a log-linear extrapolation 217 

of the curve beyond the observed boundaries. The use of a natural cubic spline function 218 

to model the exposure-response dimension ensures this non-linear extrapolation, 219 

although this step can be more problematic when applying different functions. 220 

Nonetheless, this entails a series of strong assumptions on the future risk associated to 221 

environmental factors. The first assumption, mentioned above, is that the exposure-222 

response association estimated on the currently observed range will not change in the 223 

future, for instance as a result of changes in susceptibility of the population, as discussed 224 

in Section 7. The second assumption is that the extrapolation represents appropriately 225 

the risk over the unobserved range. In addition, due to the nature of the epidemiological 226 

approaches, the extrapolation of the curve over un-observed ranges constitutes an 227 

important source of uncertainty to our projection estimates. This last issue will be further 228 

described in Section 6. 229 

 230 

5. Projection and quantification of the impact 231 

The next step of the proposed analytical framework consists in estimating the projected 232 

health impacts estimates by applying the exposure-response association estimates over 233 

the modelled series of the specific environmental stressor and outcome. Previous studies 234 

reported measures of impact using various measures, for instance in terms of percent 235 

changes in the rate of the outcome, excess mortality or morbidity, or attributable 236 

fractions.5,18,33 Our framework incorporates the procedure previously developed to 237 

estimate the impacts in terms of attributable fractions within in time series analysis, 238 

applicable either with the DLNM framework or with simpler exposure-response 239 

dependencies.34 240 



In brief, the method consists in computing for each day of the series the number of cases 241 

attributed to a specific environmental stressor based on the estimated risk and the level 242 

of exposure in that specific day. Then daily attributable numbers are aggregated by 243 

defined intervals of time in the future period. It can be also expressed in terms of 244 

attributable fraction computed as the ratio with the corresponding total number of cases. 245 

Finally, projection studies are mostly interested in obtaining comparative measures of 246 

impact between climate change scenarios or timeframes, which can be easily computed 247 

as differences in attributable numbers or fractions.  248 

In the specific setting of the example of study, we estimate the attributable number of 249 

deaths #'��(  due to non-optimal temperatures using the calibrated temperature series  250 

�$ %∗  following: 251 

#'��( = # ∙ *1 − -./0∗12345∗ ;�6∗ 7."∗1233;�6∗ 789					(2) 252 

 253 

where �∗ and �∗ represents the uni-dimensional overall cumulative exposure-response 254 

curves with reduced lag dimension, derived from the bi-dimensional term estimated in 255 

Section 1 of the tutorial. In Eq.2, we can also separate components due to heat and cold 256 

by summing the subsets corresponding to days with temperatures higher or lower than 257 

�$$.10 The same computation can be used with simpler exposure-response functions, 258 

and the equation simplifies to the usual (RR-1)/RR in the case of linear or binary 259 

unlagged relationships.  260 

The selection of the �$$ is a critical step in the quantification of the attributable mortality. 261 

While this step has been shown to have little impact in well-powered multi-location 262 

studies relying on best linear unbiased predictions, this choice can be problematic in 263 

single-location analyses that can be affected by highly imprecise exposure-response 264 

curves.10,35  265 

Figure 5 (mid and bottom panels) shows the distributions of temperatures and estimated 266 

attributable mortality, respectively, for the historic and future period in London under the 267 

assumption of stable populations and no changes in vulnerability. We can observe that 268 

the mortality burden due to cold temperatures is currently much larger than for heat, 269 

especially across the moderate cold temperatures. However, if we compare the 270 

estimates between each of the two periods, we can see that heat-attributable mortality 271 

will substantially increase in the future by 4.0% (95% empirical confidence interval (eCI): 272 

0.7-6.8), while mortality due to cold will be reduced by 3.3% (95% eCI: 4.3-1.9). A 273 

description on the computation of the eCI is provided in the following section. The same 274 



methodological procedure can be applied to derive attributable mortality for more 275 

complex scenarios, as illustrated in Section 7. 276 

 277 

6. Ensemble estimates and quantification of uncertainty  278 

A key methodological issue in projection studies is to properly identify and deal with the 279 

different sources of uncertainty involved in the projection of impacts in future scenarios. 280 

These include those related to purely statistical aspects, such as the imprecision of the 281 

estimated exposure-response function, and the inherent uncertainty of the exposure 282 

simulations obtained from the climate and circulation models.6  283 

Based on the proposed framework, uncertainty arises mainly from two main sources: the 284 

estimation of the exposure-response function, especially regarding the range over which 285 

we extrapolated the curve, and climate projections. These are represented by the 286 

covariance matrix ;(�!) of the model coefficients estimated in Equation 1 defining the 287 

exposure-response function, and the variability of the modelled series generated in each 288 

GCM (Figure 2), respectively. In the tutorial, we quantify this uncertainty by generating 289 

1000 samples of the coefficients through Monte Carlo simulations, assuming a 290 

multivariate normal distribution for the estimated spline model coefficients, and then 291 

generating results for each of the five GCMs.34 We report the results as point estimates, 292 

using the average across climate models (GCM-ensemble) obtained by the estimated 293 

coefficients, and as eCI, defined as the 2.5th and 97.5th percentiles of the empirical 294 

distribution of the attributable mortality across coefficients samples and GCMs. These 295 

eCIs account for both sources of uncertainty.  296 

As briefly mentioned before, we did not account for additional uncertainty derived from 297 

the estimation of  �$$. If desired, it is possible to quantify it using probabilistic methods 298 

showed in recent publications.35,36 Likewise, other sources of uncertainty can arise in 299 

more complex projection scenarios, such as those assuming changes in vulnerability 300 

(adaptation) and population structure. However, these can be more difficult to integrate 301 

quantitatively in the overall estimate of uncertainty. 302 

 303 

7. Accounting for complex scenarios: demographic changes and adaptation 304 

The example illustrated so far is built under the assumptions of no-adaptation and stable 305 

populations. Findings from this exercise can answer the question: “What will the 306 

temperature-related impact be in the future if the current population would be exposed 307 

to warmer temperatures projected in the future?”. However, there is a growing interest in 308 



assessing environmental impacts under more complex scenarios that account for 309 

changes in both future risks and baseline population, which could a priori approximate 310 

more realistically future health impacts. This additional section aims at describing these 311 

potential extensions. 312 

As mentioned before in the Section 2 of the tutorial, changes in size and population 313 

structure may have a strong influence on future health impacts, both by increasing the 314 

population at risk and by shifting it toward more susceptible groups with higher 315 

associated risks. Some studies have accounted for this using age-specific risks and 316 

outcome rates derived from socio-economic trajectories,18,19,27,37 defined for example in 317 

the so-called Shared Socio-economic Pathways (SSP).38 This can be incorporated in this 318 

framework by replicating the proposed procedure by each age category. This step 319 

requires the estimation of age-specific exposure-response associations, as shown in 320 

Figure 6A, and their application over the corresponding future age-specific outcome 321 

series built under a specific SSP. These modelled outcome series can be derived by re-322 

scaling the observed seasonal counts in the current period using age-specific baseline 323 

populations and rates projected in the future under a specific SSP.  However, it should 324 

be noted that, while the “stable populations” approach is built on simplistic assumptions 325 

and cannot provide a realistic representation of future excess burdens, it offers a more 326 

straightforward interpretation as it separates the impact of global warming from other 327 

changes, such as those related to demographic variations, that would occur anyway 328 

even in a stable climate.  329 

Another important issue to be considered in health projection studies is the potential 330 

changes in susceptibility to specific environmental stressors. For example, evidence 331 

obtained so far indicates that populations have partly adapted to heat stress in the last 332 

decades, with related risks showing an attenuation along this period.39 Under these 333 

assumptions, exposure-response associations obtained on historical data would not be 334 

representative of future risks, and several methods have been proposed to address this 335 

issue. These include the analogue city approach,14,40 which makes use of exposure-336 

response estimates from a location with a climate similar to that projected in the future, 337 

or methods that allows direct changes in the estimated exposure-response function41–44 338 

Both approaches can be incorporated into the proposed framework by replacing or 339 

modifying the estimated exposure-response function. As an illustrative example, Figure 340 

6B shows the modified temperature-mortality curve for London, assuming a decrease in 341 

30% in the mortality log-RR associated with heat only, obtained by applying a scaling 342 

factor to the related part of the curve. However, one should take into account that this 343 

approach, while potentially more realistic, often implies simplistic assumptions on the 344 



form of the future exposure-response shape and its changes due to adaptation (e.g., 345 

linear-threshold shapes, or shifts). In addition, while few studies have used empirical 346 

evidence from historical data,43 most of them have defined an arbitrary set of parameters 347 

to model the extent and timing of adaptation mechanisms.42 A recent publication has 348 

discussed problems and limitations of existing methods for modelling adaptation, also 349 

showing how the choice greatly influences the estimated health impacts, and discussing 350 

the difficulties in defining and quantifying valid adaptation mechanisms.45 Thus, further 351 

implications on the potential limitations of the applied method should be considered and 352 

clearly discussed when assuming hypothetical changes in vulnerability. 353 

 354 

Overview and final remarks  355 

In this contribution, we have presented a well-structured and flexible methodological 356 

framework, based on cutting-edge statistical techniques and clearly defined 357 

assumptions, to obtain health impact projections under climate change scenarios of 358 

variable complexity. Shaped as a hands-on tutorial, this article describes the key 359 

methodological steps through a practical example of an applied analysis, complemented 360 

with real data and R code. While the analytical approaches described in the example are 361 

tailored to the specific study settings, and should not be uncritically applied in a ‘cut-and-362 

paste’ approach, this tutorial offers the reader the opportunity to advance through general 363 

methodological steps, following how different statistical choices and assumptions have 364 

been translated in the analysis and code. At the same time, it enables the reader to 365 

replicate, adapt and potentially extend the proposed modelling framework by applying 366 

alternative modelling choices using other environmental stressors, outcomes, study 367 

settings, and more complex climate change scenarios. In a more general context, this 368 

tutorial highlights the need of multi-disciplinary knowledge and skills for projecting health 369 

impacts under climate change scenarios, involving experts working in different research 370 

areas, such as epidemiology, statistics, and climate science, among other subjects. This 371 

contribution clearly advocates for collaborative research and emphasizes the benefits of 372 

reproducibility and transparency in science. 373 

 374 

 375 

 376 

 377 

 378 
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Figure legends 543 

Figure 1. Temperature-related mortality in London (1990-2012). Left panel: three-544 

dimensional plot showing the estimated exposure-lag-response association between 545 

temperature and mortality. Mid panel: overall cumulative mortality risk (and 95% 546 

confidence interval). Right panel: comparison between the exposure-response shapes 547 

estimated using three modelling approaches.  548 

Figure 2. Temporal trends in projected temperature in London (1971 - 2099). Solid 549 

lines correspond to the mean annual temperature estimated across the 5 GCMs-specific 550 

modelled series. The shaded area shows its variability, corresponding to the range for 551 

each year. The two horizontal bars in the right correspond to the average annual 552 

maximum and minimum for each modelled temperature series. 553 

Figure 3. Seasonal mortality trends in London.  Grey dots correspond to the observed 554 

daily mortality counts registered in each day of the year between 1990 and 2012. The 555 

blue line depicts the mean number of deaths per day of the year. 556 

Figure 4. Bias-correction of the modelled temperature series. Comparison between 557 

the distribution (left panel) and cumulative distribution (right panel) of the raw and bias-558 

corrected modelled temperature(�$ % 	, �$ %∗ ), and the observed temperature series 559 

(� !").  560 

Figure 5. Temperature and excess mortality in London for present and future 561 

periods. Top panel: exposure-response curve represented as mortality relative risk (RR) 562 

across the temperature (°C) range, with 95% empirical confidence intervals (grey area). 563 

The dotted vertical line corresponds to the minimum mortality temperature (�$$) used 564 

as reference, which defines the two portions of the curve related to cold and heat (blue 565 

and red, respectively). The dashed part of the curve represents the extrapolation beyond 566 

the maximum temperature observed in 2010-19 (dashed vertical line). Mid panel: 567 

distribution of  �$ %∗  for the current (2010-19, grey area) and at the end of the century 568 

(2090-99, green area), projected using a specific climate model (NorESM1−M) and 569 

scenario (RCP8.5). Bottom panel: the related distribution of excess mortality, expressed 570 

as the fraction of additional deaths (%) attributed to non-optimal temperature compared 571 

with �$$. 572 

Figure 6. Accounting for complex scenarios accounting for socio-demographic 573 

changes and adaptation. Right panel: age-specific exposure-response curves, 574 

applicable to project health impact separately for each age category, thus potentially 575 

accounting for demographic changes by using differential baseline mortality trends. Left  576 

panel: comparison between the exposure-response curves under scenarios of no 577 



adaptation (continuous line) and adaptation (dashed line), the latter under the (simplistic) 578 

assumption of an hypothetical attenuation of 30% in risk associated to heat. 579 
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Calibration
London (1990−2012)
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Temperature−related mortality impacts
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