2,245 research outputs found

    Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Full text link
    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beaming effects could be significant in all types of AGN. The diversity in optical/X-ray relationships at different times in the same object, and between different objects, might be explained by changes in geometry and directions of motion relative to our line of sight. Linear shot-noise models of the variability are ruled out; instead there must be large-scale organization of variability. Variability occurs on light-crossing timescales rather than viscous timescales and this probably rules out the standard Shakura-Sunyaev accretion disk. Radio-loud and radio-quiet AGNs have similar continuum shapes and similar variability properties. This suggests similar continuum origins and variability mechanisms. Despite their extreme X-ray variability, narrow-line Seyfert 1s (NLS1s) do not show extreme optical variability.Comment: Invited talk given at Euro Asian Astronomical Society meeting in Moscow, June 2002. 20 pages, 4 figures. References update

    Spectrophotometry of 2 complete samples of flat radio spectrum quasars

    Get PDF
    Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given

    Hole polaron formation and migration in olivine phosphate materials

    Full text link
    By combining first principles calculations and experimental XPS measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong or weak bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4

    Eddy genesis and manipulation in plane laminar shear flow

    No full text
    Eddy formation and presence in a plane laminar shear flow configuration consisting of two infinitely long plates orientated parallel to each other is investigated theoretically. The upper plate, which is planar, drives the flow; the lower one has a sinusoidal profile and is fixed. The governing equations are solved via a full finite element formulation for the general case and semi-analytically at the Stokes flow limit. The effects of varying geometry (involving changes in the mean plate separation or the amplitude and wavelength of the lower plate) and inertia are explored separately. For Stokes flow and varying geometry, excellent agreement between the two methods of solution is found. Of particular interest with regard to the flow structure is the importance of the clearance that exists between the upper plate and the tops of the corrugations forming the lower one. When the clearance is large, an eddy is only present at sufficiently large amplitudes or small wavelengths. However, as the plate clearance is reduced, a critical value is found which triggers the formation of an eddy in an otherwise fully attached flow for any finite amplitude and arbitrarily large wavelength. This is a precursor to the primary eddy to be expected in the lid-driven cavity flow which is formed in the limit of zero clearance between the plates. The influence of the flow driving mechanism is assessed by comparison with corresponding solutions for the case of gravity-driven fluid films flowing over an undulating substrate. When inertia is present, the flow generally becomes asymmetrical. However, it is found that for large mean plate separations the flow local to the lower plate becomes effectively decoupled from the inertia dominated overlying flow if the wavelength of the lower plate is sufficiently small. In such cases the local flow retains its symmetry. A local Reynolds number based on the wavelength is shown to be useful in characterising these large-gap flows. As the mean plate separation is reduced, the form of the asymmetry caused by inertia changes, and becomes strongly dependent on the plate separation. For lower plate wavelengths which do not exhibit a cinematically induced secondary eddy, an inertially induced secondary eddy can be created if the mean plate separation is sufficiently small and the global Reynolds number sufficiently large

    The End of the Lines for OX 169: No Binary Broad-Line Region

    Get PDF
    We show that unusual Balmer emission line profiles of the quasar OX 169, frequently described as either self-absorbed or double peaked, are actually neither. The effect is an illusion resulting from two coincidences. First, the forbidden lines are quite strong and broad. Consequently, the [N II]6583 line and the associated narrow-line component of H-alpha present the appearance of twin H-alpha peaks. Second, the redshift of 0.2110 brings H-beta into coincidence with Na I D at zero redshift, and ISM absorption in Na I D divides the H-beta emission line. In spectra obtained over the past decade, we see no substantial change in the character of the line profiles, and no indication of intrinsic double-peaked structure. The H-gamma, Mg II, and Ly-alpha emission lines are single peaked, and all of the emission-line redshifts are consistent once they are correctly attributed to their permitted and forbidden-line identifications. A systematic shift of up to 700 km/s between broad and narrow lines is seen, but such differences are common, and could be due to gravitational and transverse redshift in a low-inclination disk. Stockton & Farnham (1991) had called attention to an apparent tidal tail in the host galaxy of OX 169, and speculated that a recent merger had supplied the nucleus with a coalescing pair of black holes which was now revealing its existence in the form of two physically distinct broad-line regions. Although there is no longer any evidence for two broad emission-line regions in OX 169, binary black holes should form frequently in galaxy mergers, and it is still worthwhile to monitor the radial velocities of emission lines which could supply evidence of their existence in certain objects.Comment: 19 pages, 5 figures, accepted for publication in Ap.

    Discovery of Radio Emission from the Quasar SDSS J1536+0441, a Candidate Binary Black-Hole System

    Full text link
    The radio-quiet quasar SDSS J1536+0441 shows two broad-line emission systems that Boroson & Lauer interpret as a candidate binary black-hole system with a separation of 0.1 pc (0.02 mas). From new VLA imaging at 8.5 GHz, two faint sources, separated by 0.97 arcsec (5.1 kpc), have been discovered within the quasar's optical localization region. Each radio source is unresolved, with a diameter of less than 0.37 arcsec (1.9 kpc). A double radio structure is seen in some other radio-quiet quasars, and the double may be energized here by the candidate 0.1-pc binary black-hole system. Alternatively, the radio emission may arise from a binary system of quasars with a projected separation of 5.1 kpc, and the two quasars may produce the two observed broad-line emission systems. Binary active galactic nuclei with a kpc scale separation are known from radio and X-ray observations, and a few such system are expected in the Boroson & Lauer sample based on the observed clustering of quasars down to the 10 kpc scale. Future observations designed to distinguish between the 0.1 pc and 5 kpc scales for the binary system are suggested.Comment: 5 pages; 1 figure; emulateapj.cls; to appear in ApJ

    The Case for Optically-Thick High Velocity Broad Line Region Gas in Active Galactic Nuclei

    Get PDF
    A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Ly-alpha/H-alpha ratio in the high-velocity gas. We show that the suggestion that the high velocity gas is optically-thin presents many problems. We show that the relative strengths of the high velocity wings arise naturally in an optically-thick BLR component. An optically-thick model successfully explains the equivalent widths of the lines, the Ly-alpha/H-alpha ratios and flatter Balmer decrements in the line wings, the strengths of CIII] and the lambda 1400 blend, and the strong variability of high-velocity, high-ionization lines (especially HeII and HeI).Comment: 34 pages in AASTeX, including 10 pages of figures. Submitted to Astrophysical Journa

    Episodic memory and sleep are involved in the maintenance of context-specific lexical information

    Get PDF
    Familiar words come with a wealth of associated knowledge about their variety of usage, accumulated over a lifetime. How do we track and adjust this knowledge as new instances of a word are encountered? A recent study (Cognition) found that, for homonyms (e.g., bank), sleep-associated consolidation facilitates the updating of meaning dominance. Here, we tested the generality of this finding by exposing participants to (Experiment 1; N = 125) nonhomonyms (e.g., bathtub) in sentences that biased their meanings toward a specific interpretation (e.g., bathtub-slip vs. bathtub-relax), and (Experiment 2; N = 128) word-class ambiguous words (e.g., loan) in sentences where the words were used in their dispreferred word class (e.g., "He will loan me money"). Both experiments showed that such sentential experience influenced later interpretation and usage of the words more after a night's sleep than a day awake. We interpret these results as evidence for a general role of episodic memory in language comprehension such that new episodic memories are formed every time a sentence is comprehended, and these memories contribute to lexical processing next time the word is encountered, as well as potentially to the fine-tuning of long-term lexical knowledge. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

    Modelling multiscale collective behavior with Gaussian processes

    Get PDF
    Collective behavior is characterized by the emergence of large-scale phenomena from local interactions. It is found in many contexts, including political movements, fads and fashions, and animal grouping. In this paper, we aim to elucidate the mechanisms that underlie observed collective behavior by developing a novel mathematical framework based on equation-free modelling procedures and Gaussian process regression. This allows us to circumvent the possible lack of formal mathematical links between scales and instead use statistical emulation to learn an empirical Fokker-Planck equation. Our approach advances our ability to understand how complex systems function at both the individual and collective level when a formal mathematical description of macroscale dynamics is unavailable

    Collective dynamics of liquid aluminum probed by Inelastic X-ray Scattering

    Full text link
    An inelastic X-ray scattering experiment has been performed in liquid aluminum with the purpose of studying the collective excitations at wavevectors below the first sharp diffraction peak. The high instrumental resolution (up to 1.5 meV) allows an accurate investigation of the dynamical processes in this liquid metal on the basis of a generalized hydrodynamics framework. The outcoming results confirm the presence of a viscosity relaxation scenario ruled by a two timescale mechanism, as recently found in liquid lithium.Comment: 8 pages, 7 figure
    • …
    corecore