385 research outputs found

    Modeling the Mechanisms by Which Coexisting Biomolecular RNA-Protein Condensates Form

    Get PDF
    Liquid–liquid phase separation is an emerging mechanism for intracellular organization. This work presents a mathematical model to examine molecular mechanisms that yield phase-separated droplets composed of different RNA–protein complexes. Using a Cahn–Hilliard diffuse interface model with a Flory–Huggins free energy scheme, we explore how multiple (here two, for simplicity) protein–RNA complexes (species) can establish a heterogeneous droplet field where droplets with single or multiple species phase separate and evolve during coarsening. We show that the complex–complex de-mixing energy tunes whether the complexes co-exist or form distinct droplets, while the transient binding kinetics dictate both the timescale of droplet formation and whether distinct species phase separate into droplets simultaneously or sequentially. For specific energetics and kinetics, a field of droplets driven by the formation of only one protein–RNA complex will emerge. Slowly, the other droplet species will accumulate inside the pre-formed droplets of the other species, allowing them to occupy the same droplet space. Alternatively, unfavorable species mixing creates a parasitic relationship: the slow-to-form protein–RNA complex will accumulate at the surface of a competing droplet species, siphoning off the free protein as it is released.Oncethis competing protein–RNA complex has sufficiently accumulated on the droplet surface, it can form a new droplet that is capable of sharing an interface with the first complex droplet but is not capable of mixing. These results give insights into a wide range of phase-separation scenarios and heterogeneous droplets that coexist but do not mix within the nucleus and the cytoplasm of cells

    Detection by LIBS of the deuterium retained in the FTU toroidal limiter

    Get PDF
    In this paper the Laser Induced Breakdown Spectroscopy (LIBS) measurement of the deuterium (used as a proxy for tritium) retained in and the surface elemental composition of the FTU Mo (TZM) toroidal limiter tiles, carried out from remote (∌2.5 m) during short breaks of the operations or during machine maintenance, are reported. Single pulse technique has been used with the FTU vessel under high vacuum or in Nitrogen or Argon atmosphere. In vacuum experiments Dα and Hα lines have been detected with good resolution, while in Ar atmosphere (5 × 104 Pa) the two lines were partially overlapped due to Stark broadening. First results of measurements in N2 atmosphere (105 Pa) showed no presence of Dα and Hα lines. These measurements were also carried out for supporting the foreseen use of a robotic arm for an extended LIBS analysis of retained deuterium in the FTU vessel components. Keywords: LIBS, FTU tokamak, Toroidal limiter, Deuterium retentio

    LIBS experiments for quantitative detection of retained fuel

    Get PDF
    Abstract Laser Induced Breakdown Spectroscopy (LIBS) provides chemical information from atomic and ionic plasma emissions generated by laser vaporization of a sample. At the ENEA research center, in collaboration with IPPLM, an equipment has been set up to qualitatively and quantitatively determine the chemical composition of impurities deposited on Plasma Facing Components (PFC). The strength of the LIBS, for its capability of light elements detection, is fully exploited to determine the deuterium content since this element can be considered as the best choice proxy for tritium; the latter being is of great importance in assessing safe conditions to assure the continuous operation in nuclear fusion tokamak. Here we present the results of the Double Pulse LIBS (DP-LIBS) probing of deuterated samples with the simultaneous optical detection by medium-resolution and high-resolution spectrometer. Deuterium emission at 656.1 nm has been detected then the elemental composition has been quantified by applying the Calibration Free (CF) approach. The obtained results demonstrate that the DP-LIBS technique combined with CF analysis is suitable for the quantitative determination of tritium content inside the PFCs of next fusion devices like ITER

    An Increasing Need for Productive and Stress Resilient Festulolium Amphiploids:What Can Be Learnt from the Stable Genomic Composition of Festuca pratensis subsp. apennina (De Not.) Hegi?

    Get PDF
    Genome composition of Festuca pratensis subsp. apennina (De Not.) Hegi, a tetraploid fescue species native to the tall forbs communities of south-eastern Europe at altitudes between 1100 and 2200m a.s.l. has been the subject of some debate by grass taxonomists. Our cytogenetic analyses including fluorescence in situ hybridisation with probes for genomic DNA and selected DNA repeats revealed the species to be allotetraploid and derived from interspecific hybridization between F. pratensis Huds., a species confined to grassland at lower altitudes, and a so far unknown Festuca species. Besides tetraploids, triploids and pentaploids were found growing in Alpine meadows in close association with F. pratensis subsp. apennina. Triploid cytotypes predominated at many sites in Switzerland and Romania, and in some localities, they were the only cytotypes observed. Cytogenetic analyses revealed the triploids to be hybrids between diploid F. pratensis and tetraploid Festuca pratensis subsp. apennina, while the pentaploid cytotypes originated from hybridization between F. pratensis subsp. apennina and hexaploid F. arundinacea Schreb., a closely-related species growing in a close vicinity to F. pratensis subsp. apennina. Parental genomes of F. pratensis subsp. apennina and of the triploid and pentaploid hybrids showed no evidence of homoeologous chromosome pairing and interspecific recombination, supporting previous observation of a disomic inheritance at meiosis, where chromosome pairing was restricted to bivalent associations. A hypothesis is presented that a chromosome pairing regulator(s), reported previously in other polyploid broad-leaved fescue species of the Festuca subg. Schedonorus, is present and functional in F. pratensis subsp. apennina. It is likely that a common ancestors’ genome that carries the chromosome pairing regulator(s) is present in all polyploid broad-leaved fescue species, and its acquisition was a key event that enabled speciation, and development of a polyploid series within Festuca. Identification of a functional chromosome pairing regulator capable of stabilizing advantageous genome combinations in hybrids within the Lolium-Festuca complex would greatly assist in development of stable Festulolium cultivars. Its expression within Festulolium amphiploid cultivars would assist strategies aimed at climate-proofing productive European grasslands to combat exposures to stress conditions

    Tune shift induced by nonlinear resistive wall wake field of flat collimator

    Get PDF
    We present formulae for the coherent and incoherent tune shifts due to the nonlinear resistive wall wake field for a single beam traveling between two parallel plates. In particular, we demonstrate that the nonlinear terms of the resistive-wall wake field become important if the gap between the plates is comparable to the transverse rms beam size. We also compare the theoretically predicted tune shift as a function of gap size with measurements for an LHC prototype graphite collimator in the CERN SPS and with simulations

    Transverse Impedance of LHC Collimators

    Get PDF
    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS

    Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and Aggrecanases in Vascular Remodeling of Stented Coronary Arteries.

    Get PDF
    BACKGROUND: Extracellular matrix (ECM) remodeling contributes to in-stent restenosis and thrombosis. Despite its important clinical implications, little is known about ECM changes post-stent implantation. METHODS: Bare-metal and drug-eluting stents were implanted in pig coronary arteries with an overstretch under optical coherence tomography guidance. Stented segments were harvested 1, 3, 7, 14, and 28 days post-stenting for proteomics analysis of the media and neointima. RESULTS: A total of 151 ECM and ECM-associated proteins were identified by mass spectrometry. After stent implantation, proteins involved in regulating calcification were upregulated in the neointima of drug-eluting stents. The earliest changes in the media were proteins involved in inflammation and thrombosis, followed by changes in regulatory ECM proteins. By day 28, basement membrane proteins were reduced in drug-eluting stents in comparison with bare-metal stents. In contrast, the large aggregating proteoglycan aggrecan was increased. Aggrecanases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family contribute to the catabolism of vascular proteoglycans. An increase in ADAMTS-specific aggrecan fragments was accompanied by a notable shift from ADAMTS1 and ADAMTS5 to ADAMTS4 gene expression after stent implantation. Immunostaining in human stented coronary arteries confirmed the presence of aggrecan and aggrecan fragments, in particular, at the contacts of the stent struts with the artery. Further investigation of aggrecan presence in the human vasculature revealed that aggrecan and aggrecan cleavage were more abundant in human arteries than in human veins. In addition, aggrecan synthesis was induced on grafting a vein into the arterial circulation, suggesting an important role for aggrecan in vascular plasticity. Finally, lack of ADAMTS-5 activity in mice resulted in an accumulation of aggrecan and a dilation of the thoracic aorta, confirming that aggrecanase activity regulates aggrecan abundance in the arterial wall and contributes to vascular remodeling. CONCLUSIONS: Significant differences were identified by proteomics in the ECM of coronary arteries after bare-metal and drug-eluting stent implantation, most notably an upregulation of aggrecan, a major ECM component of cartilaginous tissues that confers resistance to compression. The accumulation of aggrecan coincided with a shift in ADAMTS gene expression. This study provides the first evidence implicating aggrecan and aggrecanases in the vascular injury response after stenting

    DECTIN-1: A modifier protein in CTLA-4 haploinsufficiency.

    Get PDF
    Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the ÎČ-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naĂŻve αÎČ and γΎ T cells, even in the absence of transforming growth factor-ÎČ. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.S
    • 

    corecore