11 research outputs found

    Output Impedance Improvement Using Coupled Inductors

    Full text link
    When using a single DC/DC converter with multiple outputs and having a buck topology, which has one filter inductor per output, the designer can choose to couple these outputs together. This paper demonstrates additional benefits of coupling output inductors together. Apart from saving mass and volume, and due to an improved small signal behaviour it also reduces the output impedance of the regulated output. The paper will analyse a seven output push-pull converter used as a space power converter module and verify the theoretical results with experimental measurements

    CMAG: a mission to study and monitor the inner corona magnetic field

    Get PDF
    Measuring magnetic fields in the inner corona, the interface between the solar chromosphere and outer corona, is of paramount importance if we aim to understand the energetic transformations taking place there, and because it is at the origin of processes that lead to coronal heating, solar wind acceleration, and of most of the phenomena relevant to space weather. However, these measurements are more difficult than mere imaging because polarimetry requires differential photometry. The coronal magnetograph mission (CMAG) has been designed to map the vector magnetic field, line-of-sight velocities, and plane-of-the-sky velocities of the inner corona with unprecedented spatial and temporal resolutions from space. This will be achieved through full vector spectropolarimetric observations using a coronal magnetograph as the sole instrument on board a spacecraft, combined with an external occulter installed on another spacecraft. The two spacecraft will maintain a formation flight distance of 430 m for coronagraphic observations, which requires a 2.5 m occulter disk radius. The mission will be preferentially located at the Lagrangian L5 point, offering a significant advantage for solar physics and space weather research. Existing ground-based instruments face limitations such as atmospheric turbulence, solar scattered light, and long integration times when performing coronal magnetic field measurements. CMAG overcomes these limitations by performing spectropolarimetric measurements from space with an external occulter and high-image stability maintained over time. It achieves the necessary sensitivity and offers a spatial resolution of 2.5″ and a temporal resolution of approximately one minute, in its nominal mode, covering the range from 1.02 solar radii to 2.5 radii. CMAG relies on proven European technologies and can be adapted to enhance any other solar mission, offering potential significant advancements in coronal physics and space weather modeling and monitoring

    Failure Rate Measurement on Silicon Diodes Reverse Polarized at High Temperature

    No full text
    This paper calculates the failure rate on reversed polarized silicon diodes with the aim to justify, experimentally, the rules of the European Space Agency (ESA) which are referred to the component life’s extension, the reliability increase and the end of life performance enhancement, by using oversized devices (derating rules). In order to verify the derating rules, 80 silicon diodes are used, which are reverse polarized in a high temperature environment. The diodes are divided in 4 groups of 20 diodes, applying a different voltage to each group, in order to relate the failure rate to the applied derating rule. The experiment described in this paper is developed using a temperature accelerated test to check the leakage current in reverse polarization (HTRB - High Temperature Reverse Bias), with the purpose of obtaining results applying an acceleration factor in order to reduce the test duration. By using a thermal model of the whole system and the equations that describe the reverse polarized diode behaviour, it is possible to stress the 80 diodes up to very high temperature avoiding the runaway effect. Finally, the failure rate is calculated and a revision of the derating rules are proposed by using the experimental result obtained

    Failure Rate Measurement on Silicon Diodes Reverse Polarized at High Temperature

    No full text
    This paper calculates the failure rate on reversed polarized silicon diodes with the aim to justify, experimentally, the rules of the European Space Agency (ESA) which are referred to the component life’s extension, the reliability increase and the end of life performance enhancement, by using oversized devices (derating rules). In order to verify the derating rules, 80 silicon diodes are used, which are reverse polarized in a high temperature environment. The diodes are divided in 4 groups of 20 diodes, applying a different voltage to each group, in order to relate the failure rate to the applied derating rule. The experiment described in this paper is developed using a temperature accelerated test to check the leakage current in reverse polarization (HTRB - High Temperature Reverse Bias), with the purpose of obtaining results applying an acceleration factor in order to reduce the test duration. By using a thermal model of the whole system and the equations that describe the reverse polarized diode behaviour, it is possible to stress the 80 diodes up to very high temperature avoiding the runaway effect. Finally, the failure rate is calculated and a revision of the derating rules are proposed by using the experimental result obtained

    Output Impedance Improvement Using Coupled Inductors

    No full text
    When using a single DC/DC converter with multiple outputs and having a buck topology, which has one filter inductor per output, the designer can choose to couple these outputs together. This paper demonstrates additional benefits of coupling output inductors together. Apart from saving mass and volume, and due to an improved small signal behaviour it also reduces the output impedance of the regulated output. The paper will analyse a seven output push-pull converter used as a space power converter module and verify the theoretical results with experimental measurements

    Output Impedance Improvement Using Coupled Inductors

    No full text
    When using a single DC/DC converter with multiple outputs and having a buck topology, which has one filter inductor per output, the designer can choose to couple these outputs together. This paper demonstrates additional benefits of coupling output inductors together. Apart from saving mass and volume, and due to an improved small signal behaviour it also reduces the output impedance of the regulated output. The paper will analyse a seven output push-pull converter used as a space power converter module and verify the theoretical results with experimental measurements

    Determination of the SO/PHI-HRT wavefront degradation using multiple defocused images

    No full text
    The Polarimetric and Helioseismic Imager on board the Solar Orbiter mission (SO/PHI) offers refocusing capabilities to cope with the strongly varying thermal environment of the optical system along the spacecraft's elliptical orbit. The series of images recorded during in-flight focus calibrations can be employed for phase diversity analyses. In this work we infer the wavefront degradation caused by the thermo-optical effects in the High Resolution Telescope (HRT) from images taken during the fine and coarse focus scans performed in the commissioning phase of the instrument. The difference between these two series of images are mainly related to the employed defocused step (smaller for the fine scans) and the signal-to-noise ratio (higher for the coarse scans). We use the retrieved wavefronts to reconstruct the original scene observed during the calibration of the instrument. We applied a generalized phase diversity algorithm that allowed us to use several images taken with different amounts of defocus to sense the wavefront degradation caused by the instrument. The algorithm also uses information from both the inferred wavefront and the series of images to restore the solar scene We find that most of the retrieved Zernike coefficients tend to converge to the same value when increasing the number of images employed for PD for both the fine and the coarse focusing scans. The restored scenes also show signs of convergence, and the merit function is minimized more as KK increases. Apart from a defocus, the inferred wavefronts are consistent for the two datasets (Forthefinescanimages,thequiet−suncontrastimprovesfrom For the fine scan images, the quiet-sun contrast improves from 4.5\,fortheoriginalfocusedimageuptoabout for the original focused image up to about 10\,.Forthecoarsescanimages,thecontrastoftherestoredsceneisashighas. For the coarse scan images, the contrast of the restored scene is as high as 11\,$

    The X/Gamma-ray Imaging Spectrometer (XGIS) on-board THESEUS: Design, main characteristics, and concept of operation

    No full text
    THESEUS (Transient High Energy Sky and Early Universe Surveyor) is one of the three missions selected by ESA as fifth medium class mission (M5) candidates in its Cosmic Vision science program, currently under assessment in a phase A study with a planned launch date in 2032. THESEUS is designed to carry on-board two wide and deep sky monitoring instruments for X/gamma-ray transients detection: a wide-field soft X-ray monitor with imaging capability (Soft X-ray Imager, SXI, 0.3 - 5 keV), a hard X-ray, partially-imaging spectroscopic instrument (X and Gamma Imaging Spectrometer, XGIS, 2 keV - 10 MeV), and an optical/near-IR telescope with both imaging and spectroscopic capability (InfraRed Telescope, IRT, 0.7 - 1.8 \ub5m). The spacecraft will be capable of performing fast repointing of the IRT to the error region provided by the monitors, thus allowing it to detect and localize the transient sources down to a few arcsec accuracy, for immediate identification and redshift determination. The prime goal of the XGIS will be to detect transient sources, with monitoring timescales down to milliseconds, both independently of, or following up, SXI detections, and identify the sources performing localisation at <15 arcmin and characterize them over a broad energy band, thus providing also unique clues to their emission physics. The XGIS system consists of two independent but identical coded mask cameras, arranged to cover 2 steradians. The XGIS will exploit an innovative technology coupling Silicon Drift Detectors (SDD) with crystal scintillator bars and a very low-noise distributed front-end electronics (ORION ASICs), which will produce a position sensitive detection plane, with a large effective area over a huge energy band (from soft X-rays to soft gamma-rays) with timing resolution down to a few \ub5s. Here is presented an overview of the XGIS instrument design, its configuration, and capabilities
    corecore