1,445 research outputs found
Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning
Optical coherence tomography (OCT) is commonly used to analyze retinal layers
for assessment of ocular diseases. In this paper, we propose a method for
retinal layer segmentation and quantification of uncertainty based on Bayesian
deep learning. Our method not only performs end-to-end segmentation of retinal
layers, but also gives the pixel wise uncertainty measure of the segmentation
output. The generated uncertainty map can be used to identify erroneously
segmented image regions which is useful in downstream analysis. We have
validated our method on a dataset of 1487 images obtained from 15 subjects (OCT
volumes) and compared it against the state-of-the-art segmentation algorithms
that does not take uncertainty into account. The proposed uncertainty based
segmentation method results in comparable or improved performance, and most
importantly is more robust against noise
Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs
Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P \u3c 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P \u3c 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P \u3c 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate
Isolation Effects on the Moon: High Topographic Slope Observations from the LRO and LOLA Instruments
The extremely low temperatures in the Moon's polar permanent shadow regions (PSR) has long been considered a unique factor necessary for entrapping volatile Hydrogen (H). However, recent discoveries indicate some H concentrations lie outside PSR, suggesting other geophysical factors may also influence H distributions. In this study we consider insolation and its resulting thermal effects as a loss/redistribution process influencing the Moon's near-surface < 1m volatile H budget. To isolate regional (5deg latitude band) insolation effects we correlate two data sets collected from the ongoing, 1.5 year long mapping mission of the Lunar Reconnaissance Orbiter (LRO). Epithermal neutron mapping data from the Lunar Exploration Neutron Detector (LEND) is registered and analyzed in the context of slope derivations from Lunar topography maps produced by the Lunar Observing Laser Altimeter (LOLA). Lunar epithermal neutrons are inferred to be direct geochemical evidence for near-surface H due to the correlated suppression of surface leakage fluxes of epithermal neutrons with increased H concentration. Regional suppressions of neutrons seen in LEND maps are considered localized evidence of H concentration increase in the upper 1 m of the Lunar surface. To quantify spatially localized insolation effects, LEND data are averaged from sparsely distributed pixels, classed as a function of the LOLA slope derivations
The effect of social media communication on consumer perceptions of brands
Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models
High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility
The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 plus or minus 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions. There is a significant increase in H content in the polar regions independent of the H content of the NSRs. The non-NSR H content increases directly with latitude, and the rate of increase is virtually identical at both poles. There is little or no increase with latitude outside the polar region. Various mechanisms to explain this steep increase in the non-NSR polar H with latitude are investigated, and it is suggested that thermal volatilization is responsible for the increase because it is minimized at the low surface temperatures close to the poles
Correlation of Lunar South Polar Epithermal Neutron Maps: Lunar Exploration Neutron Detector and Lunar Prospector Neutron Detector
The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation techniqu
TQM and performance appraisal : complementary or incompatible?
Despite the scholarly interest in performance management as a key determinant of the effectiveness of enterprise process improvement methods such as total quality management (TQM) and its derivatives, few empirical studies have explicitly explored the practice of performance management systems in TQM‐focused organizations. In order to redress this imbalance, this study aims to describe how organizational and managerial forces led to a performance management systems failing to embrace the core principles of process improvement methods such as TQM. Using a qualitative study of six large UK‐based automobile and auto parts manufacturers, our results illustrate how manager‐controlled, individual‐focused, past‐oriented, long‐cycle, and narrowly defined performance appraisal (PA) systems can intervene to underline the ultimate potential of TQM. The paper concludes with the discussion of implications for theory and practice of TQM and human resource performance management
- …