87 research outputs found

    Towards weighing the condensation energy to ascertain the Archimedes force of vacuum

    Full text link
    The force exerted by the gravitational field on a Casimir cavity in terms of Archimedes force of vacuum is discussed, the force that can be tested against observation is identified, and it is shown that the present technology makes it possible to perform the first experimental tests. The use of suitable high-Tc superconductors as modulators of Archimedes force is motivated. The possibility is analyzed of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometer test masses to maintain the two systems well separated. The use of balances to actuate and detect the force is also analyzed, the different solutions are compared, and the most important experimental issues are discussed.Comment: Revtex, 33 pages, 8 figures. In the final version, the title has been changed, and all sections have been improved, while 2 appendices have been adde

    Sex-dependent least toxic timing of irinotecan combined with chronomodulated chemotherapy for metastatic colorectal cancer : randomized multicenter

    Get PDF
    The least toxic time (LTT) of irinotecan varied by up to 8 hours according to sex and genetic background in mice. The translational relevance was investigated within a randomized trial dataset, where no LTT stood out significantly in the whole population. 130 male and 63 female eligible patients with metastatic colorectal cancer were randomized to receive chronomodulated Irinotecan with peak delivery rate at 1 of 6 clock hours staggered by 4 hours on day 1, then fixed‐time chronomodulated Fluorouracil‐Leucovorin‐Oxaliplatin for 4 days, q3 weeks. The sex‐specific circadian characteristics of grade (G) 3‐4 toxicities were mapped with cosinor and time*sex interactions confirmed with Fisher's exact test. Baseline characteristics of male or female patients were similar in the six treatment groups. Main grade 3‐4 toxicities over six courses were diarrhea (males vs females, 39.2%; vs 46.0%), neutropenia (15.6% vs 15.0%), fatigue (11.5% vs 15.9%), and anorexia (10.0% vs 7.8%). They were reduced following irinotecan peak delivery in the morning for males, but in the afternoon for females, with statistically significant rhythms (P < .05 from cosinor) and sex*timing interactions (Fisher's exact test, diarrhea, P = .023; neutropenia, P = .015; fatigue, P = .062; anorexia, P = .032). Irinotecan timing was most critical for females, with grades 3‐4 ranging from 55.2% of the patients (morning) to 29.4% (afternoon) for diarrhea, and from 25.9% (morning) to 0% (afternoon) for neutropenia. The study results support irinotecan administration in the morning for males and in the afternoon for females, in order to minimize adverse events without impairing efficacy

    Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR) Gene Copy Number (GCN). Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC) patients receiving chemotherapy plus Cetuximab.</p> <p>Methods</p> <p>One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated) were retrospectively studied by fluorescence in situ hybridization (FISH) to assess EGFR-GCN and by immunohistochemistry (IHC) to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR), progression-free survival (PFS) and overall survival (OS).</p> <p>Results</p> <p>Increased EGFR-GCN was found in 60/101 (59%) tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43). Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43) while it was 18% (10/56) in the group with previous lines of therapy (p < 0.0001). RR was observed in 29/60 (48%) of patients with increased EGFR-GCN and in 6/28 (21%) in those without (p = 0.02). At multivariate analyses, number of chemotherapy lines and increased EGFR-GCN were predictive of response; EGFR-IHC score, increased EGFR-GCN and number of chemotherapy lines were significantly associated with a significant better PFS. Response to therapy was the only prognostic predictive factor for OS. In the 60 patients analyzed for k-ras mutations, number of chemotherapy lines, increased EGFR-GCN and k-ras wild type status predicted a better PFS.</p> <p>Conclusion</p> <p>In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.</p

    Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Diverse outcomes of binary-disk interactions

    Full text link
    Circumstellar disks do not evolve in isolation, as about half of solar-type stars were born in binary or multiple systems. Resolving disks in binary systems provides the opportunity to examine the influence of stellar companions on the outcomes of planet formation. We aim to investigate and compare disks in stellar multiple systems with near-infrared scattered-light imaging as part of the Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS) program. We used polarimetric differential imaging with SPHERE/IRDIS at the VLT to search for scattered light from the circumstellar disks in three multiple systems, CHX 22, S CrA, and HP Cha. We performed astrometric and orbit analyses for the stellar companions using archival HST, VLT/NACO, and SPHERE data. Combined with the age and orbital constraints, the observed disk structures provide insights into the evolutionary history and the impact of the stellar companions. The small grains in CHX 22 form a tail-like structure surrounding the close binary, which likely results from a close encounter and capture of a cloudlet. S CrA shows intricate structures (tentative ringed and spiral features) in the circumprimary disk as a possible consequence of perturbations by companions. The circumsecondary disk is truncated and connected to the primary disk via a streamer, suggesting tidal interactions. In HP Cha, the primary disk is less disturbed and features a tenuous streamer, through which the material flows towards the companions. The comparison of the three systems spans a wide range of binary separation (50 - 500 au) and illustrates the decreasing influence on disk structures with the distance of companions. This agrees with the statistical analysis of exoplanet population in binaries, that planet formation is likely obstructed around close binary systems, while it is not suppressed in wide binaries.Comment: 19 pages, 6 figures, accpeted for publication in A&

    An ontology-based approach supporting holistic structural design with the consideration of safety, environmental impact and cost

    Get PDF
    Early stage decision-making for structural design critically influences the overall cost and environmental performance of buildings and infrastructure. However, the current approach often fails to consider the multi-perspectives of structural design, such as safety, environmental issues and cost in a comprehensive way. This paper presents a holistic approach based on knowledge processing (ontology) to facilitate a smarter decision-making process for early design stage by informing designers of the environmental impact and cost along with safety considerations. The approach can give a reasoning based quantitative understanding of how the design alternatives using different concrete materials can affect the ultimate overall performance. Embodied CO2 and cost are both considered along with safety criteria as indicative multi-perspectives to demonstrate the novelty of the approach. A case study of a concrete structural frame is used to explain how the proposed method can be used by structural designers when taking multi performance criteria into account. The major contribution of the paper lies on the creation of a holistic knowledge base which links through different knowledge across sectors to enable the structural engineer to come up with much more comprehensive decisions instead of individual single objective targeted delivery

    Efficacy and safety of chronomodulated irinotecan, oxaliplatin, 5‐fluorouracil and leucovorin combination as first‐ or second‐line treatment against metastatic colorectal cancer : results from the International EORTC 05011 Trial

    Get PDF
    The triplet combination of irinotecan, oxaliplatin and fluorouracil is an active frontline regimen in metastatic colorectal cancer, but scarce data exist on its use as salvage treatment. We aimed at assessing its safety and efficacy profiles with its circadian‐based administration (chronoIFLO5) as either first‐ or second‐line treatment, within the time‐finding EORTC 05011 trial. Five‐day chronoIFLO5 was administered every 3 weeks in patients with PS 0, 1 or 2. It consisted of chronomodulated irinotecan (180 mg/sqm), oxaliplatin (80 mg/sqm) and fluorouracil‐leucovorin (2800 and 1200 mg/sqm, respectively). For our study, toxicity and antitumour activity were evaluated separately in first‐ and second‐line settings. Primary endpoints included Grade 3‐4 toxicity rates, best objective response rate (ORR), progression‐free survival (PFS) and overall survival (OS). One‐hundred forty‐nine and 44 patients were treated in first‐line and second‐line settings, respectively, with a total of 1138 cycles with median relative dose intensities of about 90%. Demographics were comparable in the two groups. Thirty‐six (24.7%) and 10 (22.2%) patients experienced at least one episode of severe toxicity in first line and second line, respectively. Frontline chronoIFLO5 yielded an ORR of 62.3% [95% CI: 54.2‐70.4] and resulted in median PFS and OS of 8.7 months [7.5‐9.9] and 19.9 months [15.4‐24.5]. Corresponding figures in second line were 37.5% [22.5‐52.5], 6.7 months [4.8‐8.9] and 16.3 months [11.8‐20.8]. International and prospective evaluation revealed the favourable safety and efficacy profiles of chronoIFLO5, both as frontline and as salvage treatment against metastatic colorectal cancer. In particular, encouraging activity in second line was observed, with limited haematological toxicity

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino de tector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower-or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches
    corecore