850 research outputs found
Absorption line series and autoionization resonance structure analysis in the ultraviolet spectrum of Sr I
Photoelectric spectrometer to measure absorption line series and autoionization resonance in ultraviolet spectrum of strontium vapo
Identification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST
PTP-PEST is a ubiquitously expressed, cytosolic, mammalian protein tyrosine phosphatase (PTP) which exhibits high specific activity in vitro, We have investigated the substrate specificity of PTP-PEST by a novel substrate-trapping approach in combination within vitro dephosphorylation experiments. We initially identified a prominent 130-kDa tyrosine-phosphorylated protein in pervanadate-treated HeLa cell lysates which was preferentially dephosphorylated by PTP-PEST in vitro, In order to identify this potential substrate, mutant (substrate-trapping) forms of PTP-PEST were generated which lack catalytic activity but retain the ability to bind substrates. These mutant proteins associated in stable complex-es exclusively with the same 130-kDa protein, which was identified as p130(cas) by immunoblotting. This exclusive association was observed in lysates from several cell lines and in transfected COS cells, but was not observed with other members of the PTP family, strongly suggesting that p130(cas) represents a major physiologically relevant substrate for PTP-PEST. Our studies suggest potential roles for PTP-PEST in regulation of p130(cas) function, These functions include mitogen- and cell adhesion-induced signalling events and probable roles in transformation by various oncogenes. These results provide the first demonstration of a PTP having an inherently restricted substrate a specificity in vitro and in vivo. The methods used to identify p130(cas) as a specific substrate for PTP-PEST are potentially applicable to any PTP and should therefore prove useful in determining the physiological substrates of other members of the PTP family
Iron homeostasis and post-hemorrhagic hydrocephalus: A review
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH
Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor
Although the ERK pathway has a central role in the response of cells to growth factors, its regulatory structure and dynamics are incompletely understood. To investigate ERK activation in real time, we expressed an ERK–GFP fusion protein in human mammary epithelial cells. On EGF stimulation, we observed sustained oscillations of the ERK–GFP fusion protein between the nucleus and cytoplasm with a periodicity of ∼15 min. The oscillations were persistent (>45 cycles), independent of cell cycle phase, and were highly dependent on cell density, essentially disappearing at confluency. Oscillations occurred even at ligand doses that elicited very low levels of ERK phosphorylation, and could be detected biochemically in both transfected and nontransfected cells. Mathematical modeling revealed that negative feedback from phosphorylated ERK to the cascade input was necessary to match the robustness of the oscillation characteristics observed over a broad range of ligand concentrations. Our characterization of single-cell ERK dynamics provides a quantitative foundation for understanding the regulatory structure of this signaling cascade
The Emerging Aversion to Inequality: Evidence from Poland 1992-2005
This paper provides an illustration of the changing tolerance for inequality in a context of radical political and economic transformation and rapid economic growth. We focus on the Polish experience of transition and explore self-declared attitudes of the citizens. Using monthly representative surveys of the population, realized by the Polish poll institute (CBOS) from 1992 to 2005, we identify a structural break in the relation between income inequality and subjective evaluation of well-being. The downturn in the tolerance for inequality (1997) coincides with the increasing distrust of political elites.http://deepblue.lib.umich.edu/bitstream/2027.42/64387/1/wp919.pd
Symmetry breaking in crossed magnetic and electric fields
We present the first observations of cylindrical symmetry breaking in highly
excited diamagnetic hydrogen with a small crossed electric field, and we give a
semiclassical interpretation of this effect. As the small perpendicular
electric field is added, the recurrence strengths of closed orbits decrease
smoothly to a minimum, and revive again. This phenomenon, caused by
interference among the electron waves that return to the nucleus, can be
computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig)
Accepted for publication in Physical Review Letters. Difference from earlier
preprint: we have discovered the cause of the earlier apparent discrepancy
between experiment and theory and now achieve excellent agreemen
Unresolved issues and new challenges in teaching English to young learners:the case of South Korea
The introduction of languages, especially English, into the primary curriculum around the world has been one of the major language-in-education policy developments in recent years. In countries where English has been compulsory for a number of years, the question arises as to what extent the numerous and well-documented challenges faced by the initial implementation of early language learning policies have been overcome and whether new challenges have arisen as policies have become consolidated. This article therefore focuses on South Korea, where English has been compulsory in primary school since 1997. The issues raised by the introduction of English into the primary curriculum are reviewed and the current situation in South Korea is investigated. The results of a mixed methods study using survey data from 125 Korean primary school teachers, together with data from a small-scale case study of one teacher are presented. The study shows that, while some of the initial problems caused by the introduction of early language learning appear to have been addressed, other challenges persist. Moreover, the data reveal the emergence of a number of new challenges faced by primary school teachers of English as they seek to implement government policy
Transitions/relaxations in polyester adhesive/PET system
The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics
- …