368 research outputs found

    Electron correlation effects in electron-hole recombination in organic light-emitting diodes

    Get PDF
    We develop a general theory of electron--hole recombination in organic light emitting diodes that leads to formation of emissive singlet excitons and nonemissive triplet excitons. We briefly review other existing theories and show how our approach is substantively different from these theories. Using an exact time-dependent approach to the interchain/intermolecular charge-transfer within a long-range interacting model we find that, (i) the relative yield of the singlet exciton in polymers is considerably larger than the 25% predicted from statistical considerations, (ii) the singlet exciton yield increases with chain length in oligomers, and, (iii) in small molecules containing nitrogen heteroatoms, the relative yield of the singlet exciton is considerably smaller and may be even close to 25%. The above results are independent of whether or not the bond-charge repulsion, X_perp, is included in the interchain part of the Hamiltonian for the two-chain system. The larger (smaller) yield of the singlet (triplet) exciton in carbon-based long-chain polymers is a consequence of both its ionic (covalent) nature and smaller (larger) binding energy. In nitrogen containing monomers, wavefunctions are closer to the noninteracting limit, and this decreases (increases) the relative yield of the singlet (triplet) exciton. Our results are in qualitative agreement with electroluminescence experiments involving both molecular and polymeric light emitters. The time-dependent approach developed here for describing intermolecular charge-transfer processes is completely general and may be applied to many other such processes.Comment: 19 pages, 11 figure

    Longitudinal molecular microbial analysis of influenza-like illness in New York City, may 2009 through may 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a longitudinal study of viral etiology in samples collected in New York City during May 2009 to May 2010 from outpatients with fever or respiratory disease symptoms in the context of a pilot respiratory virus surveillance system.</p> <p>Methods</p> <p>Samples were assessed for the presence of 13 viruses, including influenza A virus, by MassTag PCR.</p> <p>Results</p> <p>At least one virus was detected in 52% of 940 samples analyzed, with 3% showing co-infections. The most frequently detected agents were rhinoviruses and influenza A, all representing the 2009 pandemic H1N1 strain. The incidence of influenza H1N1-positive samples was highest in late spring 2009, followed by a decline in summer and early fall, when rhinovirus infections became predominant before H1N1 reemerged in winter. Our study also identified a focal outbreak of enterovirus 68 in the early fall of 2009.</p> <p>Conclusion</p> <p>MassTag multiplex PCR affords opportunities to track the epidemiology of infectious diseases and may guide clinicians and public health practitioners in influenza-like illness and outbreak management. Nonetheless, a substantial proportion of influenza-like illness remains unexplained underscoring the need for additional platforms.</p

    Carbon dioxide fluxes across the Sierra de Guadarrama, Spain

    Get PDF
    Understanding the spatial and temporal variation in soil respiration within small geographic areas is essential to accurately assess the carbon budget on a global scale. In this study, we investigated the factors controlling soil respiration in an altitudinal gradient in a southern Mediterranean mixed pine&#8211;oak forest ecosystem in the north face of the Sierra de Guadarrama in Spain. Soil respiration was measured in five Pinus sylvestris L. plots over a period of 1 year by means of a closed dynamic system (LI-COR 6400). Soil temperature and water content were measured at the same time as soil respiration. Other soil physico-chemical and microbiological properties were measured during the study. Measured soil respiration ranged from 6.8 to 1.4 lmol m-2 s-1, showing the highest values at plots situated at higher elevation. Q10 values ranged between 1.30 and 2.04, while R10 values ranged between 2.0 and 3.6. The results indicate that the seasonal variation of soil respiration was mainly controlled by soil temperature and moisture. Among sites, soil carbon and nitrogen stocks regulate soil respiration in addition to soil temperature and moisture. Our results suggest that application of standard models to estimate soil respiration for small geographic areas may not be adequate unless other factors are considered in addition to soil temperature

    Multicystic encephalomalacia as an end-stage finding in abusive head trauma

    Get PDF
    Abusive head trauma (AHT) is one of the most severe forms of physical child abuse. If a child initially survives severe AHT the neurological outcome can be poor. In recent years several children were seen who developed multicystic encephalomalacia (MCE) after documented severe AHT. A search of the Netherlands Forensic Institute database in The Hague was performed. Inclusion criteria were cases of AHT between 1999 and 2010 where the child was under the age of 1 year old at the time of trauma. Trauma mechanism and radiological information were collected. Five children, three boys and two girls (mean age 57 days, range 8–142 days) who developed cystic encephalomalacia after inflicted traumatic brain injury were included. Survival ranged from 27 to 993 days. In all cases judicial autopsy was performed. All cases came before court and in each case child abuse was considered to be proven. In two cases the perpetrator confessed, during police interrogation, to shaking of the child only. Although a known serious outcome, this is one of the few reports on MCE as a result of AHT. In all cases the diagnosis was confirmed at autopsy

    Genomic Signature-Based Identification of Influenza A Viruses Using RT-PCR/Electro-Spray Ionization Mass Spectrometry (ESI-MS) Technology

    Get PDF
    BACKGROUND: The emergence and rapid spread of the 2009 H1N1 pandemic influenza A virus (H1N1pdm) in humans highlights the importance of enhancing the capability of existing influenza surveillance systems with tools for rapid identification of emerging and re-emerging viruses. One of the new approaches is the RT-PCR electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology, which is based on analysis of base composition (BC) of RT-PCR amplicons from influenza "core" genes. Combination of the BC signatures represents a "genomic print" of an influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Here, 757 samples collected between 2006 and 2009 were tested, including 302 seasonal H1N1, 171 H3N2, 7 swine triple reassortants, and 277 H1N1pdm viruses. Of the 277 H1N1pdm samples, 209 were clinical specimens (throat, nasal and nasopharyngeal swabs, nasal washes, blood and sputum). BC signatures for the clinical specimen from one of the first cases of the 2009 pandemic, A/California/04/2009, confirmed it as an unusual, previously unrecognized influenza A virus, with "core" genes related to viruses of avian, human and swine origins. Subsequent analysis of additional 276 H1N1pdm samples revealed that they shared the genomic print of A/California/04/2009, which differed from those of North American swine triple reassortant viruses, seasonal H1N1 and H3N2 and other viruses tested. Moreover, this assay allowed distinction between "core" genes of co-circulating groups of seasonal H1N1, such as clades 2B, 2C, and their reassortants with dual antiviral resistance to adamantanes and oseltamivir. CONCLUSIONS/SIGNIFICANCE: The RT-PCR/ESI-MS assay is a broad range influenza identification tool that can be used directly on clinical specimens for rapid and accurate detection of influenza virus genes. The assay differentiates the H1N1pdm from seasonal and other nonhuman hosts viruses. Although not a diagnostic tool, this assay demonstrates its usefulness and robustness in influenza virus surveillance and detection of novel and unusual viruses with previously unseen genomic prints

    Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment

    Get PDF
    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses

    Extensive Mammalian Ancestry of Pandemic (H1N1) 2009 Virus

    Get PDF
    We demonstrate that the novel pandemic influenza (H1N1) viruses have human virus–like receptor specificity and can no longer replicate in aquatic waterfowl, their historic natural reservoir. The biological properties of these viruses are consistent with those of their phylogenetic progenitors, indicating longstanding adaptation to mammals

    Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) are promising cancer drugs currently in clinical trials in oncology, including APO866, CHS-828 and the CHS-828 prodrug EB1627/GMX1777, but cancer cell resistance to these drugs has not been studied in detail.</p> <p>Methods</p> <p>Here, we introduce an analogue of CHS-828 called TP201565 with increased potency in cellular assays. Further, we describe and characterize a panel of cell lines with acquired stable resistance towards several NAMPT inhibitors of 18 to 20,000 fold compared to their parental cell lines.</p> <p>Results</p> <p>We find that 4 out of 5 of the resistant sublines display mutations of NAMPT located in the vicinity of the active site or in the dimer interface of NAMPT. Furthermore, we show that these mutations are responsible for the resistance observed. All the resistant cell lines formed xenograft tumours <it>in vivo</it>. Also, we confirm CHS-828 and TP201565 as competitive inhibitors of NAMPT through docking studies and by NAMPT precipitation from cellular lysate by an analogue of TP201565 linked to sepharose. The NAMPT precipitation could be inhibited by addition of APO866.</p> <p>Conclusion</p> <p>We found that CHS-828 and TP201565 are competitive inhibitors of NAMPT and that acquired resistance towards NAMPT inhibitors can be expected primarily to be caused by mutations in NAMPT.</p
    corecore