570 research outputs found

    Resonant phonon coupling across the La{1-x}Sr{x}MnO{3}/SrTiO{3} interface

    Full text link
    The transport and magnetic properties of correlated La{0.53}Sr{0.47}MnO{3} ultrathin films, grown epitaxially on SrTiO{3}, show a sharp cusp at the structural transition temperature of the substrate. Using a combination of experiment and theory we show that the cusp is a result of resonant coupling between the charge carriers in the film and a soft phonon mode in the SrTiO{3}, mediated through oxygen octahedra in the film. The amplitude of the mode diverges towards the transition temperature, and phonons are launched into the first few atomic layers of the film affecting its electronic state

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Ring-Exchange Interaction Effects on Magnons in Dirac Magnet CoTiO3_3

    Full text link
    In magnetically ordered materials with localized electrons, the fundamental magnetic interactions are due to exchange of electrons [1-3]. Typically, only the interaction between pairs of electrons' spins is considered to explain the nature of the ground state and its excitations, whereas three-, four-, and six-spin interactions are ignored. When these higher order processes occur in a loop they are called cyclic or ring exchange. The ring-exchange interaction is required to explain low temperature behavior in bulk and thin films of solid 3^3He [4-8]. It also plays a crucial role in the quantum magnet La2_2CuO4_4 [9,10]. Here, we use a combination of time domain THz (TDTS) and magneto-Raman spectroscopies to measure the low energy magnetic excitations in CoTiO3_3, a proposed Dirac topological magnon material [11,12] where the origin of the energy gap in the magnon spectrum at the Brillouin zone center remains unclear. We measured the magnetic field dependence of the energies of the two lowest energy magnons and determine that the gap opens due to the ring-exchange interaction between the six spins in a hexagon. This interaction also explains the selection rules of the THz magnon absorption. Finally, we clarify that topological surface magnons are not expected in CoTiO3_3. Our study demonstrates the power of combining TDTS and Raman spectroscopies with theory to identify the microscopic origins of the magnetic excitations in quantum magnets.Comment: 7 pages, 4 figures in main text, 26 pages and 11 figures in supplemen

    Peak Stir Zone Temperatures during Friction Stir Processing

    Get PDF
    The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 ⁰Cto 1015 ⁰C (0.90 to 0.97 TMelt) and were not affected by preheating to 400⁰C, although the dwell time above 900 ⁰C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments

    Get PDF
    Archaea have evolved to survive in some of the most extreme environments on earth. Life in extreme, nutrient-poor conditions gives the opportunity to probe fundamental energy limitations on movement and response to stimuli, two essential markers of living systems. Here we use three-dimensional holographic microscopy and computer simulations to reveal that halophilic archaea achieve chemotaxis with power requirements one hundred-fold lower than common eubacterial model systems. Their swimming direction is stabilised by their flagella (archaella), enhancing directional persistence in a manner similar to that displayed by eubacteria, albeit with a different motility apparatus. Our experiments and simulations reveal that the cells are capable of slow but deterministic chemotaxis up a chemical gradient, in a biased random walk at the thermodynamic limit
    corecore