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ARTICLE

Haloarchaea swim slowly for optimal chemotactic
efficiency in low nutrient environments
Katie L. Thornton1, Jaimi K. Butler 2, Seth J. Davis 3,4, Bonnie K. Baxter 2 & Laurence G. Wilson 1✉

Archaea have evolved to survive in some of the most extreme environments on earth. Life in

extreme, nutrient-poor conditions gives the opportunity to probe fundamental energy lim-

itations on movement and response to stimuli, two essential markers of living systems. Here

we use three-dimensional holographic microscopy and computer simulations to reveal that

halophilic archaea achieve chemotaxis with power requirements one hundred-fold lower than

common eubacterial model systems. Their swimming direction is stabilised by their flagella

(archaella), enhancing directional persistence in a manner similar to that displayed by

eubacteria, albeit with a different motility apparatus. Our experiments and simulations reveal

that the cells are capable of slow but deterministic chemotaxis up a chemical gradient, in a

biased random walk at the thermodynamic limit.
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H
alophilic archaea are ubiquitously slow swimming, in
what is presumed to be a response to nutrient-limited
conditions1. They also possess genetic components for

chemotaxis analogous to those found in bacterial species2,3,
suggesting that their chemotactic strategies must be both highly
refined, and potentially similar to the ‘run and tumble’ or ‘run
and reverse’ behaviours seen in eubacteria. However, existing
work on halophilic archaeal motility suggests that cells move with
long, meandering trajectories, changing direction very rarely4.
This is inconsistent with current understanding of how Brownian
motion limits bacterial chemotaxis5,6.

The randomising influence of Brownian motion dominates life
on the micrometre scale7 and confounds microorganisms’
attempts to navigate. To counter this, bacteria use an intracellular
memory of response regulators to integrate stimuli over time8.
Swimming trajectories are interspersed with quasi-instantaneous
changes in direction: tumbles9, reverse-flicks10–12, or pauses13.
The time between re-orientations is modulated by the chemotaxis
system, in response to chemical gradients. Meanwhile, rotational
Brownian motion randomises a cell’s orientation on a time scale
τr ¼ 2Drð Þ�1, where Dr is the rotational diffusion coefficient set
by cell geometry and fluid friction7. This acts as a fundamental
limit on chemotactic performance. The prevailing model holds
that cells must reorient on time scales shorter than τr otherwise
stored information about local chemical gradients becomes
invalid14.

The response regulator CheY plays a central role in many
eubacteria. Intriguingly, analogues of this protein play distinct
roles in different species: in gram-negative Escherichia coli, an
increase in phosphorylated CheY (CheY-P) increases the tumble
probability; in gram-positive Bacillus subtilis, increased CheY-P
suppresses tumbles15. Swimming and taxes in archaea are less
understood, although recent work in elucidating the details of the
signal transduction network has revealed similarities to bacterial
systems16–18. Swimming motility in archaea also has some
similarities to the bacterial case; for example, quasi-ballistic
swimming interspersed with direction reversals has been observed
in some species19. Recent work on CheY in the halophilic
archaeon Haloferax volcanii3 found structural similarity to CheY
in gram-positive bacteria, alongside structural modifications for
interfacing with the archaeal motility apparatus.

Here we show that halophilic archaea perform chemotaxis by
modulating their run durations in response to a chemical gra-
dient. We measure swimming speeds, reversal rates and rotational
diffusivities of cells swimming in three dimensions and use these
as inputs to Brownian dynamics simulations. We find that our
cells’ motility apparatus, their archaella, stabilise swimming tra-
jectories against the influence of Brownian motion, and that their
run durations and swimming speed maximise the (fractional)
chemotactic drift speed and chemotactic efficiency.

Results
Swimming behaviour in three dimensions. To study chemo-
tactic behaviour in halophilic archaea, we isolated two strains
from hypersaline environments: Great Salt Lake (Utah, United
States of America (USA))20 and a desiccated ancient salt lake
found underground at Boulby Mine, United Kingdom (UK,
Supplementary Note 1)21. Our whole-genome sequencing iden-
tified the isolates as representatives of the genera Haloarcula and
Haloferax, respectively. The strains possess archaeal flagellins
(archaellins, Fig. 1), motor complexes and CheY proteins. Cells of
both strains were rod-shaped, ~0.7 μm in width, and 1–2 μm in
length (Supplementary Fig. 1).

The cells swim slowly, making the discrimination of motile
cells from background debris difficult by eye, although swimming

cells are clearly visible in a time-lapse image (Fig. 2a).
Exponential-phase cultures were imaged using holographic
microscopy to record cell trajectories in three dimensions (Fig. 2b,
c, Methods section, and Supplementary Movies1–4). Both strains
exhibit ‘run and reverse’ swimming, with average speeds of
1.9 μm s−1 ± 0.7 μm s−1 and 2.2 μm s−1 ± 0.8 μm s−1 (mean ±
s.d.) for Haloferax sp. Boulby Mine (HXBM) and Haloarcula sp.
Great Salt Lake (HGSL), respectively (Fig. 2d, f), with no
difference in speed between forward and reverse phases. The
distributions of run durations are approximately exponential,
with fitted mean values of τrun= 14.7 (12.1) s for HXBM (HGSL),
as shown in Fig. 2e, g. Run durations of these halophilic archaea
are over 10 times longer than those found in larger bacterial
species such as E. coli, and consistent with previous two-
dimensional studies of motile halophilic archaea next to sample
chamber surfaces22. We also note that the relatively low
swimming speed of the cells, coupled with the large distances
over which we track them mean that the re-orientation events
observed take on a V-shaped character in Fig. 2b, c. More detail
on the procedure for isolating reversal events (and hence run
duration) can be found in the Methods section and Supplemen-
tary Fig. 2.

Rotational diffusion. To observe the influence of Brownian rota-
tion, we study the directional persistence of our cells during straight
runs occurring at least 20 μm away from all boundaries. The rota-
tional diffusivity Dr is found through the direction correlation
function, given in the purely Brownian case by CB τð Þ ¼
a tð Þ � a t þ τð Þ ¼ exp �2Drτð Þ. The cell bodies of both strains
undergo small-amplitude helical motion while swimming (Fig. 3a -
the dashed line is a guide to the eye showing the helical aspect),
complicating the analysis and leading to an overestimate of Dr when
this simple model is fitted to the measured direction correlation
function. We attribute this phenomenon to the rotational motion of
the cell’s archaellum23, driven by a rotary motor19. We incorporate a
small periodic oscillation into the rotational diffusion to obtain
C τð Þ ¼ exp �2Drτð Þ cos2θ þ sin2θ cos ωτð Þ½ �, where θ is the helix
pitch angle, and ω is helical angular frequency (Fig. 3b–d, Supple-
mentary Note 2, and Supplementary Eqs. 1 and 2).

Distributions of fitted parameters are shown in Fig. 2e–j,
including the key values of rotational diffusivity Dr= 0.077 s−1

(HGSL) and 0.081 s−1 (HXBM), corresponding to τr=
(2Dr)−1= 6.5 s and 6.17 s, respectively (modal values). These
values are similar to those found in Caulobacter crescentus24, and
equivalent to those of an ellipsoid with the same width, but
approximately three times the length of the archaeal cells
observed. This indicates that although they are thought to have
arisen from distinct precursor structures – the type IV pilus in
archaea and type III secretion system in eubacteria18 – the
flagellar structures of both archaea and eubacteria increase the
effective length of the cells, stabilising them against Brownian
rotation10.

Chemotaxis experiments. At low Reynolds numbers, reciprocal
motion should not lead to a net displacement of a cell25. How-
ever, Brownian motion has been shown to break symmetry and
enhance the net displacement of such a swimmer26, a feature that
our species appear to exploit. Modulating run duration to achieve
chemotaxis is expected to fail when τrun � τr

6.
B. subtilis, E. coli, and other model bacterial systems operate in the

opposite limit, in which τrun � τr. In contrast to this, our strains
operate in the ambiguous region where τrun ~ τr. Evidence points to
chemotaxis being achieved in species related to ours: capillary and
chemical-in-plug assays performed with Haloferax volcanii and
Halobacterium salinarum3,27 resulted in centimetre-scale rings on
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Fig. 1 Motility gene organisation. Organisation of the fla operons in our environmental isolates Haloferax sp. Boulby Mine (HXBM) and Haloarcula sp. Great

Salt Lake (HGSL) showing flagellins, signal transduction and motor complex components.
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Fig. 2 3D tracking of extremophile archaea. a Time-lapse dark field image of Haloarcula sp. Great Salt Lake (HGSL) cells. Non-motile cells are small

white objects, motile cells are coloured streaks. b, c Computer rendered three-dimensional tracks of Haloferax sp. Boulby Mine (HXBM) and HGSL,

respectively, acquired using holographic microscopy. The cells from both strains show characteristic meandering trajectories and infrequent reversal

events. d Instantaneous swimming speeds for HXBM (N= 2.3 × 106 time points), and Gaussian fit (dotted line). The mean swimming speed is 1.9 μm s−1 ±

0.7 μm s−1 (mean ± s.d.). e The distribution of run durations in HXBM is approximately exponential, with a mean run duration of 14.7 s (N= 232 runs).

f Instantaneous speeds for HGSL (N= 4.0 × 106 time points), with a mean speed of 2.2 μm s−1 ± 0.8 μm s−1 (mean ± s.d.). g The distribution of run

durations in HGSL is approximately exponential with a mean run duration of 12.1 s (N= 659 runs).
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agar plates associated with chemotaxis, although in eubacteria these
structures have been seen in the absence of key components of the
adaptation system14, and when chemotaxis or motility is abolished
completely28,29. Furthermore, maintaining a full complement of
chemotaxis genes seems unlikely in the absence of selective pressure
to do so.

To investigate further, we performed a chemotaxis assay by
filling one end of a sample chamber with methionine-infused
agar27. Cells were attracted to the region close to the agar
interface (a phenomenon not observed in the media-only and
saltwater controls, Supplementary Fig. 3). We recorded the three-
dimensional swimming dynamics of cells close to the methionine-
agar interface using holographic microscopy. The data from all
movies were aligned so that the positive x direction points up the
chemical gradient. Figure 4a, b show the anisotropic distributions
of run durations in the gradient. Cells from both strains showed a
significant increase in run duration when swimming up the
gradient, compared with runs perpendicular to it. The results are
summarised in Table 1, and show that both strains appear to
shorten runs slightly when running down the gradient, though
this effect is strongest in HXBM and arguably within experi-
mental uncertainties for HGSL. The runs perpendicular to the
gradient serve as an experimental control. Chemokinetic effects
have been found to enhance chemotactic precision in marine
eubacterial systems30, but there is no evidence that we observe a
chemokinetic effect in our archaeal samples: the swimming speed
is approximately constant throughout the gradient and constant
within individual tracks over long durations (Supplementary

Fig. 4). Examining the difference in τrun for cells swimming up
versus down the gradient allows us to estimate the fractional
chemotactic drift speed31, vx=v0 ¼ 2½ðTþ � T�Þ=ðTþ þ T�Þ�,
where vx is the chemotactic drift speed up the gradient and v0
is the swimming speed. Results are shown in Table 1.

Brownian dynamics simulations. We explored the fundamental
limits of chemotaxis in this context using Brownian dynamics
simulations to study how chemotactic drift speed is affected by run
duration, reversal rate and swimming speed. If the cells are to climb
a chemical gradient efficiently in nutrient-sparse environments, we
argue that three conditions that must be satisfied: (i) cells must be
able to sense gradients while avoiding saturation of their chemor-
eceptors (the function of adaptation in eubacteria32–34); (ii) they
must be able to outpace diffusing molecules in unstable gradients by
having a mean-squared displacement that is greater than that for a
diffusing molecule. This will always occur if the chemotactic velo-
city (vx) is >0, but the cells must be able to do so in a time that is
shorter than the cell generation time; (iii) in a nutrient-poor
environment, cells must minimise the power (P) output required to
overcome hydrodynamic friction. For a ballistically swimming cell
at low Reynolds number, P ¼ γv20 , where γ is a friction coefficient
determined by the cell geometry7. We use this quantity to define a
chemotactic efficiency, ε= vx/P.

We simulated swimming trajectories with durations in the range
104—106 s (~3—240 h), orders of magnitude beyond the current
spatial and temporal range of single-cell tracking experiments.
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Fig. 3 Model-based extraction of transport parameters. a An exemplar trajectory of Haloferax sp. Boulby Mine (HXBM), showing helical tendency. The

red dashed line is a guide to the eye showing left-handed helix shape, grey lines are planar projections of the track. b Idealised helical track showing the

parameters in our model: tangent vector (a), pitch (θ), and angular frequency (ω). c Angular correlation function aðtÞ � aðtþ τÞ
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for a single track of

Haloarcula sp. Great Salt Lake (HGSL). The analytical fit (solid line), shows damped oscillatory behaviour imposed on an exponential decay. d Angular

correlation of the idealised helix, e.g., in panel b, with no rotational Brownian motion. e–g Distributions of ω, Dr (including log-normal fit), and θ of HGSL

(N= 1171 tracks), extracted from three-dimensional tracks. h–j The same parameters for HXBM.
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These time scales are also well beyond the doubling time of our
strains at optimal conditions (~5 h) and were chosen to allow us to
explore the theoretical parameter space fully. Cell–cell interactions
were neglected, appropriate to the extremely dilute conditions from
which our samples were originally obtained. Parameters such as τrun
and Dr were taken from experimental results (Methods section).
Sophisticated models of eubacterial chemotaxis have been demons-
trated35,36, but these are subject to the molecular details of the
signalling pathway. These details are not known in our case, so we

implemented a simpler perturbative model in which the reversal
probability was modulated in response to the cell’s recent
history37,38. To ensure that cells maintain a linear response
(requirement (i) above), the cells’s chemotactic sensitivity is chosen
to maximise the modulation of the reversal rate, while preventing
receptor saturation (see Supplementary Fig. 5 for more details).
Figure 5c–e show representative simulated tracks for a non-motile
cell (Fig. 5c), an archaeal cell swimming at v0= 2 μm s−1 (Fig. 5d),
and an E. coli cell (Fig. 5e) swimming at v0= 20 μm s−1.
The simulated attractant concentration increases linearly with x.
The simulated E. coli cell shows a comparatively rapid ascent of the
gradient, with a chemotactic drift speed vx approximately five times
greater than the archaeon, although the fractional drift speeds vx/v0
are the same for both motile cells.

In the absence of a gradient, our simulated cells had a constant
probability of reversal at each time step, taken from experimental
data in Fig. 2. We investigated three possible variants of
chemotactic response in which the run duration is modulated:
runs shortened in response to a negative stimulus (motion down
a chemical gradient), runs lengthened in response to a positive
stimulus (motion up a chemical gradient) and a response
incorporating both strategies (‘bipolar’ response). Figure 5d
shows how the unstimulated run duration τrun affects fractional
drift velocity (vx/v0), for a simulated archaeal cell. The swimming
speed was set at v0= 2 µm s−1 for all cells in this set. Fractional
drift velocity initially increases with run duration, peaking at
τrun ≈ 10, above which point rotational Brownian motion comes
to dominate the swimming dynamics and vx/v0 decreases.
Interestingly, cells that can only shorten their runs perform
better when the unstimulated run duration is longer. Our
environmental isolates exhibit an unstimulated run duration
close to the optimum, while utilising both run shortening and run
lengthening to achieve chemotaxis. This adaptation may offer
more flexibility in chemical landscapes with a more complicated
spatial distribution, or confined environments.

Figure 5e shows the mean-squared displacement per unit time,
parallel to the gradient, x2ðτÞh i=τ, as indicated (N= 100 simulations
per curve). The simulations of E. coli were performed using run and
tumble statistics obtained from a separate set of three-dimensional
tracking experiments on this species (Supplementary Fig. 6). E. coli
was chosen as a representative bacterium; its run-tumble statistics are
similar to those of other species such as B. subtilis39. At short times,
the motile cells show ballistic behaviour: x2ðτÞh i=τ / τ. At
intermediate delay times (101 < τ < 102 s), diffusive behaviour
becomes more apparent: x2ðτÞh i=τ / τa, where α < 1, and α→0
for the non-chemotactic cells. Chemotactic cells then display a second
ballistic regime at the longest times as they move up gradients of
diffusing molecules. Example diffusivities for substances with different
molecular weights are indicated on the right-hand side of Fig. 5e. All
the chemotactic cells can successfully navigate up chemical gradients
of the smallest molecules, although the slowest cells require a
relatively long time to do so – over 10 h for v= 1 μms−1

(considerably beyond the 5-h cell doubling time for our archaeal
species). The cells swimming at 2 μm s−1 achieve comparable
mean-squared displacements in ~2.5 h, satisfying requirement
(ii) above.

Speed and efficiency. Finally, we investigated the effect of cell
swimming speed (v0) on the fractional drift velocity and effi-
ciency, again using values for τrun and Dr taken from the
experimental data for HXBM shown in Figs. 2e and 3i. Figure 5f
shows that fractional chemotactic drift speed (vx/vo) increases
with v0 until v0 ≈ 2 μm s−1, where it saturates at a value close to
that observed experimentally for HXBM (vx/v0= 0.11 ± 0.02).
This saturation is not predicted by models like those in Refs. 37,38,

b

a

20.6
(304)

15.6
(228)

16.3
(196)

13.3
(244)

15.8
(238)

20.9
(230)

Increasing methionine concentration

Average run duration, in seconds

(number of runs recorded)

HXBM

20.6
(466)

18.0
(387)

18.1
(376)

17.2
(474)

18.6
(392)

19.8
(482)

Increasing methionine concentration

Average run duration, in seconds

(number of runs recorded)

HGSL

Fig. 4 Experiments demonstrating chemotactic performance.

a Experimental results for Haloferax sp. Boulby Mine (HXBM) moving

towards methionine. The sections of the graph show the average run

duration in directions relative to the methionine gradient, with the number

of runs recorded in parentheses. Error bars on each segment represent
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run duration in Haloarcula sp. Great Salt Lake (HGSL).

Table 1 Summary of experimental chemotaxis results.

Strain Up Perpendicular Down Estimated

vx/v0

Run duration, for directions relative to

methionine gradient (s)

HXBM 20.7 ± 0.3 15.7 ± 0.4 14.6 ± 0.4 0.11 ± 0.02

HGSL 20.2 ± 0.3 18.3 ± 0.4 17.6 ± 0.6 0.04 ± 0.01

These show average run duration up, down or perpendicular to the methionine gradient. The

error bars represent s.e.m. (standard error of the mean).
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which find vx � v20 scaling for the chemotactic drift speed in weak
chemotaxis, both in the absence and presence of rotational dif-
fusion (respectively). Rotational diffusion plays a more dominant
role in our system compared to that of faster-swimming species
like E. coli. In our system, τrun≳τr, so that Brownian rotation is
being exploited by our species to randomise swimming direction
on a characteristic time scale similar to that of their intrinsic run/
reverse dynamics. The nonlinear relationship between v0 and vx is
also manifested in the efficiency which is shown in Fig. 5g, scaled
by the friction coefficient γ. The efficiency is roughly constant
across the lower range of v0, and scales as ε � v�1

0 for higher
swimming speeds. Although our simulations show the slowest-
swimming cells performing chemotaxis with the highest efficiency
(requirement (iii), above), we reiterate that these cells chemotax
too slowly to meet requirement (i). Our strains are capable of

chemotaxis at a considerably higher efficiency than those that
swim faster, owing to the onset of ε � v�1

0 scaling. As a whole,
these simulations indicate that HXBM performs at, or close to,
the optimum theoretical chemotactic efficiency. The performance
of HGSL in experiments is further from the optimum efficiency
defined by our linear model (though approximately the same
magnitude). There could be several explanations for this dis-
crepancy, for instance that the model might not be as applicable
to this strain due to details of the adaptation pathway, or that
methionine is simply a weaker attractant to this species.

In conclusion, we have studied motile environmental isolates of
halophilic archaea using three-dimensional tracking and Brow-
nian dynamics simulations, and found their chemotactic
efficiency to be optimal. Though the chemotactic system
controlling reversal probability is structurally similar to that
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found in bacteria, our microorganisms have different motility
structures40. Our study sought to characterise this distinctive
system. Counterintuitively, given their very long run durations,
these cells are capable of slow but efficient chemotaxis. We
speculate that this is an adaptation to an environment in which
nutrients are scarce and competition is extremely limited, as it
constitutes a minimum energy consumption strategy for achiev-
ing chemotaxis by swimming. In contrast to this behaviour, many
of the most widely studied motile eubacteria exist where both
nutrients and competition are more abundant, requiring them to
swim (and consequently consume nutrients) much faster. These
differing eubacterial and archaeal strategies demonstrate the
general utility and adaptability of flagellar (archaellar) motility in
different conditions, mediated by a change in swimming
dynamics. Finally, we note that our results are a limiting case,
namely chemotaxis in an isotropic fluid. Cells in a structured
environment, such as rock or salt crystals with micrometre-scale
fissures, would have their rotational diffusion inhibited by the
walls of their local environment, preventing them from rotating
about their short axes. Such confinement could increase τr
substantially, extending the cells’ directional persistence.

Methods
Cell culture for motility experiments. Archaeal cells were cultured in the stan-
dard laboratory archaeal medium Modified Growth Media (MGM)41 at 25% dis-
solved salt, adjusted to pH 7.5. When preparing the growth medium Oxoid-
Peptone was used as other peptones have been shown to contain bile salts which
lyse haloarchaeal cells42. For each sample, 10 ml of media containing 50 μl of
saturated culture was incubated at 45 °C in an orbital shaker at 150 rpm for 18 h to
early exponential growth phase. Three to five biological replicates were made for
each experimental condition, each of which was imaged in at least five movies.
Sample chambers were constructed from glass slides and cover slips, with a sample
volume measuring ~20 × 10 × 0.4 mm3 and loaded by capillary action.

Genome sequencing. DNA was extracted from the archaeal samples using the
technique of ethanol precipitation recommended for halophiles43 with STE buffer
used in place of phenol. Deionised water was used to rapidly lyse the cells without
damaging the genetic material. DNA was isolated and purified using a NucleoSpin
PCR clean-up kit. DNA quality and concentration were assessed using gel elec-
trophoresis and micro-volume spectrophotometry (NanoDrop). DNA sequencing
was outsourced to a specialist prokaryotic genetics laboratory (Microbes NG,
University of Birmingham, UK). Visualisation of the whole genome was under-
taken using Snap Gene Viewer (version 4.1.9) open source software. Genetic data
was then compared with published genes using the BLAST database44. Exact
species were difficult to reliably deduce due to the high levels of genetic transfer
typically associated with haloarchaea45.

Digital holographic microscopy. Our cell tracking experiments were performed
using digital holographic microscopy, as described elsewhere12,46–48. The samples
were imaged on a Nikon Ti inverted microscope. The illumination source was a
Thorlabs single-mode fibre-coupled laser diode with peak emission at 642 nm. The
end of the fibre was mounted above the specimen stage using a custom adaptor and
delivered a total of 15 mW of optical power to the sample. A Mikrotron MC-1362
monochrome camera was used to acquire videos of 3000 frames, at a frame rate of
50 Hz and with an exposure time of 100 μs. A ×20 magnification bright field lens
with numerical aperture of 0.5 was used to acquire data at a video resolution of
512 × 512 pixels2, corresponding to a field of view measuring 360 × 360 μm2. The
raw videos were saved as uncompressed, 8-bit AVI files.

Holographic data reconstruction. Each individual video frame was used to cal-
culate a further 150 images corresponding to a series of slices throughout the
sample volume. The images were spaced at 2 μm apart along the optical axis and in
total constituted a reconstructed volume of 360 × 360 × 300 μm3. The stack of
numerically refocused images was calculated using the Rayleigh-Sommerfeld back-
propagation scheme49. We localised the cells50 using a method based on the Gouy
phase anomaly, described in more detail elsewhere46,51. This method segments
features based on axial optical intensity gradients within a sample, allowing us to
extract 3D coordinates for individual cells in each frame. Lateral position uncer-
tainties were ~0.4 μm, while the axial performance was slightly worse at ~0.5 μm.
The latter was limited by the angular resolution of the microscope objective. A
separate software routine was used to identify which coordinates in subsequent
frames correspond to the same cell, based on their proximity. These coordinates
were arranged into tracks and smoothed using piecewise cubic splines in order to

remove noise in the cell coordinates and improve estimates of cell velocity as
described in previous work12. Examining the mean-squared displacement of the
cells’ smoothed trajectories allowed us to discriminate between swimming and
diffusing cells, and to discard the latter. The smoothing process also allowed for
linear interpolation of missing data points, up to 5 points (equivalent to 0.1 s).
Tracks with a duration shorter than 3 s, typically cells entering or leaving the field
of view, were discarded. To identify points where the swimming cells reverse
direction, we define a heuristic measure Ξ based on the cell’s swimming speed and
angular speed (the rate at which the cell is changing direction):

Ξ tð Þ ¼
a tð Þ � a t þ 1ð Þj j

Δt
� 1�

vt
vh it

� �

; ð1Þ

where Δt is the time between successive position measurements in a track, vt is a
cell’s instantaneous speed and vt is the average speed for the whole track. Example
data and values for Ξ are given in Supplementary Fig. 2.

Numerical simulations of archaeal cells. We used the values for swimming
speed, run length and rotational diffusivity obtained from Haloferax sp. Boulby
Mine to set up Brownian dynamics simulations. Cells were modelled as prolate
ellipsoids, subject to rotational and translational diffusion7,52. The viscosity of the
growth medium was measured to be 1.82 ± 0.01 cp using a concentric-cylinder
rheometer. The ellipsoids move along their major axis with a fixed speed, and a
probability of reversing drawn from the distribution fitted to experiments (Fig. 2e),
with a mean run time of 14.7 s. The position of the centre of mass of all cells in

each run ravg tð Þ ¼ 1=Nð Þ
P

N

i¼1

ri tð Þ was recorded as a function of time. A straight-

line fit through the origin was performed on these data sets to extract values for v,
the drift velocities: ravg (t)= vt, where v=(vx, vy, vz) and (vx) is the drift in response
to the gradient. The parameters used in simulations (unless specified) were those
obtained in experiments. To summarise: for the model archaea, τrun= 14.7 s, Dr=

0.08 s−1, v0= 2 μm s−1 and cells reverse only. For E. coli, τrun= 1 s, Dr= 0.08 s−1,
v0= 20 μm s−1, and the tumble angles are drawn randomly from the experimen-
tally derived distribution in Supplementary Fig. 6. E. coli cells are permitted to
lengthen their runs only, in line with experimental evidence9.

Chemotaxis model. To simulate chemotaxis, we biased a cell’s tumble probability
depending on whether it has moved up or down a simulated chemical gradient. For
simplicity, the chemical concentration was given by c(x,y,z)= x, i.e. a constant
gradient in the positive x-direction. Motivated by the analogy to eubacterial two-
component signalling, we adopt a general approach38,53,54 to calculate a time-

dependent tumble rate λ tð Þ ¼ λ 1�
R

t

�1

dt0c t0ð ÞR t � t0ð Þ

� �

, where λ= 1/τrun, and

c(t′) is the concentration experienced by the cell at time t′. The cell’s chemical

response function is given by RðtÞ ¼ W k e�kt ½1� kt=2� ðkt=2Þ2�, where W is the
chemotactic sensitivity and k is a rate constant that describes how long a cell retains
information about previous chemical concentrations to which it has been exposed
(i.e. the length of its ‘chemical memory’). We tuned two parameters: the unbiased
tumble rate λ and the swimming speed v. The quantity W was chosen to ensure the
maximum chemotactic response while minimising saturation (see Supplementary
Figs. 5 and 7 for more details). Previous studies37,38,54 have coupled R(t) to the base
tumbling rate such that λ= k, in line with experiments14. we explore the effect of
decoupling λ and k in the extended [...] data and choose a memory length of 1/k =
2 s. Simulations were performed for batches of 100 cells under each condition,
simulating cells swimming for 104 s with time steps of 0.033 s, except in the case of
the mean-squared displacement results (Fig. 5e), in which we conducted simula-
tions for much longer time scales, up to 3 × 106 s, in order to collect sufficient
statistics at long times. Initial swimming directions were chosen randomly by
allowing the direction vector to diffuse randomly for 60 s before the start of each
trajectory.

Chemotaxis experiments. The verify our results, we performed three-dimensional
tracking experiments on both environmental isolates in a chemical gradient of
methionine, which is known to be an attractant to other halophilic archaea24. The
gradient was formed by preparing saltwater agar in liquid form at 50 °C, and
adding methionine to a final concentration of 5 mM. This liquid media was quickly
pipetted into the end of a sample chamber where it cooled to form a solid plug.
When the agar had cooled sufficiently, cell suspensions were pipetted into the other
end of the chamber, which was then sealed. The chamber was left for around an
hour for the gradient to become established and a band of cells to form close to the
agar interface. Cells within the band, ~1–2 mm from the interface, were imaged as
in previous experiments.

Data availability
The tracking and simulation data supporting this study are available at the York Research

Database (https://doi.org/10.15124/6b44e8e4-a22c-4a55-a2fc-b2976a06d2b4). Sequence

data that support the findings of this study have been deposited in the European

Nucleotide Archive with the primary accession code PRJEB33805. All materials are

available from the authors upon reasonable request.
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Code availability
Details of the holographic reconstruction routines have been published elsewhere49, and

strategies for three-dimensional cell tracking have been published in the corresponding

references46,51. The simulation scheme has been published by previous authors38,54 and

we have used the parameters given in the text.
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