3,561 research outputs found

    Preliminary evaluation of a thin organic film coating Final report

    Get PDF
    High temperature and humidity resistance of thin siloxane films on metal substrate

    Proposal to demonstrate the non-locality of Bohmian mechanics with entangled photons

    Full text link
    Bohmian mechanics reproduces all statistical predictions of quantum mechanics, which ensures that entanglement cannot be used for superluminal signaling. However, individual Bohmian particles can experience superluminal influences. We propose to illustrate this point using a double double-slit setup with path-entangled photons. The Bohmian velocity field for one of the photons can be measured using a recently demonstrated weak-measurement technique. The found velocities strongly depend on the value of a phase shift that is applied to the other photon, potentially at spacelike separation.Comment: 6 pages, 4 figure

    Deterministic Generation of Entangled Photons in Superconducting Resonator Arrays

    Full text link
    We present a scheme for the deterministic generation of entangled photon pairs in a superconducting resonator array. The resonators form a Jaynes-Cummings lattice via the coupling to superconducting qubits, and the Kerr-like nonlinearity arises due to the coupling.We show that entangled photons can be generated on demand by applying spectroscopic techniques and exploiting the nonlinearity and symmetry in the resonators. The scheme is robust against small parameter spreads due to fabrication errors. Our findings can be used as a key element for quantum information processing in superconducting quantum circuits.Comment: 4 pages, 3 figure

    Transverse multi-mode effects on the performance of photon-photon gates

    Full text link
    The multi-mode character of quantum fields imposes constraints on the implementation of high-fidelity quantum gates between individual photons. So far this has only been studied for the longitudinal degree of freedom. Here we show that effects due to the transverse degrees of freedom significantly affect quantum gate performance. We also discuss potential solutions, in particular separating the two photons in the transverse direction.Comment: 5 pages, 3 figures, published versio

    Cross-Kerr nonlinearity between continuous-mode coherent states and single photons

    Full text link
    Weak cross-Kerr nonlinearities between single photons and coherent states are the basis for many applications in quantum information processing. These nonlinearities have so far mainly been discussed in terms of highly idealized single-mode models. We develop a general theory of the interaction between continuous-mode photonic pulses and apply it to the case of a single photon interacting with a coherent state. We quantitatively study the validity of the usual single-mode approximation using the concepts of fidelity and conditional phase. We show that high fidelities, non-zero conditional phases and high photon numbers are compatible, under conditions where the pulses fully pass through each other and where unwanted transverse-mode effects are suppressed.Comment: 8 pages, 2 figures, more general results in section V

    OneOpPF: A Personal Finance Professional Development Resource

    Get PDF
    This article describes personal finance programming available through the OneOp Personal Finance team (OneOpPF) for the professional development of Extension educators and military Personal Financial Managers for outreach to their clientele. Included is a brief description of six OneOpPF deliverables (webinars, blog posts, Question of the Day tweets, podcasts, social media, and newsletters) and a discussion of impact indicators such as online outreach statistics and continuing education units awarded to program participants. The article concludes with four best practices for working with military stakeholders and a description of how OneOpPF program materials can be accessed by Extension professionals

    The origin of ultra diffuse galaxies: stellar feedback and quenching

    Get PDF
    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies. We show that stellar feedback-generated outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching (from e.g. infall into a galaxy cluster), naturally reproduce the observed population of red UDGs, without the need for high spin halos or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed z=0 red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated galaxies with M_star ~1e8 Msun, low metallicity and a broad range of ages. The most massive simulated UDGs require earliest quenching and are therefore the oldest. Our simulations provide a good match to the central enclosed masses and the velocity dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the simulated UDGs remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The most massive red UDG in our sample requires quenching at z~3 when its halo reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0 its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with mass-to-light ratios similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around Ms~1e8 Msun, both in the field and in clusters.Comment: 20 pages, 13 figures; match the MNRAS accepted versio

    Geometry of One-Dimensional Wave Propagation

    Get PDF
    We investigate the geometrical features of one-dimensional wave propagation, whose dynamics is described by the (2+1)-dimensional Lorentz group. We find many interesting geometrical ingredients such as spinorlike behavior of wave amplitudes, gauge transformations, Bloch-type equations, and Lorentz-group Berry phases. We also propose an optical experiment to verify these effects.Comment: RevTeX, 16 pages, 6 postscript figure

    An Integrated Science Glovebox for the Gateway Habitat

    Get PDF
    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development
    corecore