102 research outputs found

    αE-catenin-dependent mechanotransduction is essential for proper convergent extension in zebrafish

    Get PDF
    Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin. Mechanical unfolding of α -catenin leads to force-dependent reinforcement of cadherin-based junctions as studied in cell culture. The importance of cadherin mechanotransduction for embryonic development has not been studied yet. Here we used TALEN-mediated gene disruption to perturb endogenous αE-catenin in zebrafish development. Zygotic α-catenin mutants fail to maintain their epithelial barrier, resulting in tissue rupturing. We then specifically disrupted mechanotransduction, while maintaining cadherin adhesion, by expressing an αE-catenin construct in which the mechanosensitive domain was perturbed. Expression of either wild-type or mechano-defective α-catenin fully rescues barrier function in α-catenin mutants. Expression of mechano-defective α-catenin, however, also induces convergence and extension defects. Specifically, the polarization of cadherin-dependent, lamellipodia-driven cell migration of the lateral mesoderm was lost. These results indicate that cadherin mechanotransduction is crucial for proper zebrafish morphogenesis and uncover one of the essential processes affected by its perturbation

    New magnetic-resonance-imaging-visible poly(epsilon-caprolactone)-based polyester for biomedical applications

    Get PDF
    A great deal of effort has been made since the 1990s to enlarge the field of magnetic resonance imaging. Better tissue contrast, more biocompatible contrast agents and the absence of any radiation for the patient are some of the many advantages of using magnetic resonance imaging (MRI) rather than X-ray technology. But implantable medical devices cannot be visualized by conventional MRI and a tool therefore needs to be developed to rectify this. The synthesis of a new MRI-visible degradable polymer is described by grafting an MR contrast agent (DTPA-Gd) to a non-water-soluble, biocompatible and degradable poly(epsilon-caprolactone) (PCL). The substitution degree, calculated by H-1 nuclear magnetic resonance and inductively coupled plasma-mass spectrometry, is close to 0.5% and proves to be sufficient to provide a strong and clear T1 contrast enhancement. This new MRI-visible polymer was coated onto a commercial mesh for tissue reinforcement using an airbrush system and enabled in vitro MR visualization of the mesh for at least 1 year. A stability study of the DTPA-Gd-PCL chelate in phosphate-buffered saline showed that a very low amount of gadolinium was released into the medium over 52 weeks, guaranteeing the safety of the device. This study shows that this new MRI-visible polymer has great potential for the MR visualization of implantable medical devices and therefore the post-operative management of patients. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Permanent Polymer Coating for in vivo MRI Visualization of Tissue Reinforcement Prostheses

    Get PDF
    The clinical advantage of MRI visualization of prostheses in soft tissue prolapses is very appealing as over 1?000?000 MRI-transparent synthetic meshes are implanted annually, and postoperative complications such as mesh shrinkage and migration are frequent. Here, the synthesis of a new material composed of a DTPA-Gd complex grafted onto a backbone of PMA via a covalent bond is described (DTPA-Gd-PMA). This new polymer is sprayed onto meshes and gives an MR signal for a long period without any significant release of Gd. In vitro cytocompatibility tests on fibroblasts show limited cytotoxicity. Microscopic investigations indicate that vital cells rapidly colonize the material. Finally, coated meshes implanted in rats are easily recognizable using an MR imaging system

    Measuring global mean sea level changes with surface drifting buoys

    Full text link
    Combining ocean model data and in-situ Lagrangian data, I show that an array of surface drifting buoys tracked by a Global Navigation Satellite System (GNSS), such as the Global Drifter Program, could provide estimates of global mean sea level (GMSL) and its changes, including linear decadal trends. For a sustained array of 1250 globally distributed buoys with a standardized design, I demonstrate that GMSL decadal linear trend estimates with an uncertainty less than 0.3 mm yr−1^{-1} could be achieved with GNSS daily random error of 1.6 m or less in the vertical direction. This demonstration assumes that controlled vertical position measurements could be acquired from drifting buoys, which is yet to be demonstrated. Development and implementation of such measurements could ultimately provide an independent and resilient observational system to infer natural and anthropogenic sea level changes, augmenting the on-going tide gauge and satellites records.Comment: resubmitted to AGU Geophysical Research Letter

    CopolymĂšre hydrophobe visible en IRM

    Get PDF
    The invention relates to a hydrophobic thermoplastic copolymer which is in particular of use for manufacturing and/or coating medical devices, in particular implantable medical devices, characterized in that it is obtained by copolymerization, and in that it comprises at least one first monomer unit and at least one second monomer unit onto which is grafted a paramagnetic-ion-chelating ligand which can complex with such a paramagnetic ion or a paramagnetic-ion-chelating ligand which is complexed with such a paramagnetic ion, wherein the second monomer unit is grafted in sufficient amount for the copolymer to be visible in magnetic resonance imaging when it is complexed with said paramagnetic ion. The invention also relates to a method for obtaining said hydrophobic thermoplastic copolymer
    • 

    corecore