30 research outputs found

    Corrigendum to “Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy” [Neuromuscular Disorders, Vol. 30 (6) 2020, 492-502] (Neuromuscular Disorders (2020) 30(6) (492–502), (S0960896620301188), (10.1016/j.nmd.2020.05.002))

    Get PDF
    This article reported on the results from a phase 2 trial of domagrozumab and its open-label extension in patients with Duchenne muscular dystrophy (Clinicaltrials.gov identifiers: NCT02310763 and NCT02907619). The manuscript also provided results on two secondary endpoints for magnetic resonance imaging (MRI), muscle volume and muscle volume index. The authors regret that, following publication of the results and in preparation for a separate publication on MRI results from this trial, the MRI images were reviewed and segmentation errors were identified. As a result, the team worked to (1) Perform a rigorous quality inspection of all analysed data; (2) Identify cases where there were incorrect segmentations; (3) correct segmentation errors; (4) Re-analyse all data with correct segmentation. Using the updated MRI data, the MMRM analysis showed there was a change in the significance of secondary endpoints evaluating Thigh Muscle Volume and Muscle Volume Index. No significant differences between treatment groups in muscle volume measures were found in the original analysis. These results have not altered the overall interpretation of the study results but do necessitate revisions to the article. These data confirm that the trial design and execution adequately tested the hypothesis that myostatin inhibition would slow or delay the loss of function in patients with Duchenne muscular dystrophy (DMD). The increase in muscle volume observed by MRI in patients with DMD treated with domagrozumab is in accordance with mechanism of action for domagrozumab, which targets myostatin, a negative regulator of muscle growth. The increase in muscle volume did not lead to a clinical benefit in patients with DMD. The primary endpoint (4 stair climb) did not meet statistical significance, nor did the other functional tests. The study was terminated due to lack of efficacy. Full details of the needed revisions are as follows: 1. In the results section 3.6 (page 8, second paragraph), we reported no significant differences in mean percent change from baseline between domagrozumab and placebo for both muscle volume and muscle volume index. This paragraph was replaced with the following text: “There was a significant difference between domagrozumab and placebo in the mean percent change from baseline in thigh muscle volume at Week 17 (difference 2.945%, P=0.0087) and Week 49 (differences 4.087%, P=0.0298), and in muscle volume index at Week 33 (difference 2.612%, P=0.0376) and Week 49 (differences3.208%, P=0.0411).” 2. In the discussion (page 9), the following sentence, “Although neither muscle volume nor muscle volume index measures were statistically significant in this study, they are both consistent with a potential anabolic effect.” was replaced with, “The increase in muscle volume observed on MRI in patients with DMD treated with domagrozumab, is in accordance with mechanism of action for this compound which targets myostatin, a negative regulator of muscle growth. However, the increase in muscle volume did not lead to a clinical benefit (improved function) in patients with DMD.” 3. In view of the correction to the Results section, this is now reflected in the abstract which has changed to read: “There were no significant between-group differences in secondary clinical endpoints, except for the thigh muscle volume and muscle volume index measures (P\u3c0.05).” The authors would like to apologise for any inconvenience caused

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Efficacy of P188 on lapine meniscus preservation following blunt trauma

    No full text
    Traumatic injury to the knee leads to the development of post-traumatic osteoarthritis. The objective of this study was to characterize the effects of a single intra-articular injection of a non-ionic surfactant, Poloxamer 188 (P188), in preservation of meniscal tissue following trauma through maintenance of meniscal glycosaminoglycan (GAG) content and mechanical properties. Flemish Giant rabbits were subjected to a closed knee joint, traumatic compressive impact with the joint constrained to prevent anterior tibial translation. The contralateral limb served as an un-impacted control. Six animals (treated) received an injection of P188 in phosphate buffered saline (PBS) post trauma, and another six animals (sham) received a single injection of PBS to the impacted limb. Histological analyses for GAG was determined 6 weeks post trauma, and functional outcomes were assessed using stress relaxation micro-indentation. The impacted limbs of the sham group demonstrated a significant decrease in meniscal GAG coverage compared to non-impacted limbs (. p\u3c0.05). GAG coverage of the impacted P188 treated limbs was not significantly different than contralateral non-impacted limbs in all regions except the medial anterior (. p\u3c0.05). No significant changes were documented in mechanics for either the sham or treated groups compared to their respective control limbs. This suggests that a single intra-articular injection of P188 shows promise in prevention of trauma induced GAG loss

    Evaluation of meniscal mechanics and proteoglycan content in a modified anterior cruciate ligament transection model

    No full text
    Post-traumatic osteoarthritis (PTOA) develops as a result of traumatic loading that causes tears of the soft tissues in the knee. A modified transection model, where the anterior cruciate ligament (ACL) and both menisci were transected, was used on skeletally mature Flemish Giant rabbits. Gross morphological assessments, elastic moduli, and glycosaminoglycan (GAG) coverage of the menisci were determined to quantify the amount of tissue damage 12 weeks post injury. This study is one of the first to monitor meniscal changes after inducing combined meniscal and ACL transections. A decrease in elastic moduli as well as a decrease in GAG coverage was seen. Copyright © 2014 by ASME

    Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee

    No full text
    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post-impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (. p=0.018) and femurs (. p\u3c0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (. p=0.026), 34.8% increase in tibial plateau permeability (. p=0.054), 40.8% increase in femoral condyle permeability (. p=0.029), and 20.1% decrease in femoral condyle matrix modulus (. p=0.012) in impacted joints compared to controls. Both instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (. p\u3c0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (. p=0.036). In both meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post-injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee

    The 2nd Generation Real Time Mission Monitor (RTMM) Development

    No full text
    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial RTMM doesn t make the airborne science, it makes the airborne science easier
    corecore