154 research outputs found

    Design and acceptability assessment of a new reversible orthosis

    Get PDF
    We present a new device aimed at being used for upper limb rehabilitation. Our main focus was to design a robot capable of working in both the passive mode (i.e. the robot shall be strong enough to generate human-like movements while guiding the weak arm of a patient) and the active mode (i.e. the robot shall be able of following the arm without disturbing human natural motion). This greatly challenges the design, since the system shall be reversible and lightweight while providing human compatible strength, workspace and speed. The solution takes the form of an orthotic structure, which allows control of human arm redundancy contrarily to clinically available upper limb rehabilitation robots. It is equipped with an innovative transmission technology, which provides both high gear ratio and fine reversibility. In order to evaluate the device and its therapeutic efficacy, we compared several series of pointing movements in healthy subjects wearing and not wearing the orthotic device . In this way, we could assess any disturbing effect on normal movements. Results show that the main movement characteristics (direction, duration, bell shape profile) are preserved. ©2008 IEEE

    Evaluation of an MPN test for the rapid enumeration of Pseudomonas aeruginosa in hospital waters.

    Get PDF
    In this study, the performance of a new most probable number (MPN) test (Pseudalert®/Quanti-Tray®) for the enumeration of Pseudomonas aeruginosa from hospital waters was compared with both international and national membrane filtration-based culture methods for P. aeruginosa: ISO 16266:2006 and UK The Microbiology of Drinking Water – Part 8 (MoDW Part 8), which both use Pseudomonas CN agar. The comparison based on the calculation of mean relative differences between the two methods was conducted according to ISO 17994:2014. Using both routine hospital water samples (80 from six laboratories) and artificially contaminated samples (192 from five laboratories), paired counts from each sample and the enumeration method were analysed. For routine samples, there were insufficient data for a conclusive assessment, but the data do indicate at least equivalent performance of Pseudalert®/Quanti-Tray®. For the artificially contaminated samples, the data revealed higher counts of P. aeruginosa being recorded by Pseudalert®/Quanti-Tray®. The Pseudalert®/Quanti-Tray® method does not require confirmation testing for atypical strains of P. aeruginosa, saving up to 6 days of additional analysis, and has the added advantage of providing confirmed counts within 24–28 hours incubation compared to 40–48 hours or longer for the ISO 16266 and MoDW Part 8 methods

    Including Pathogen Risk in Life Cycle Assessment of Wastewater Management. 1. Estimating the Burden of Disease Associated with Pathogens

    Get PDF
    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2–9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28 600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series

    Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    Get PDF
    Purpose. To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods. Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg ®). Results. Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30 % (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion. The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. KEY WORDS: drug release; enzymatic degradation; meta-tetra(hydroxyphenyl)chlorin (mTHPC); photodynamic therapy (PDT); polymeric micelles

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965

    Get PDF
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch
    • …
    corecore