310 research outputs found

    Analysis of Jovian decamteric data: Study of radio emission mechanisms

    Get PDF
    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA)

    Multi-Color Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: a Novel Step Toward More Precise Distance and Extinction Estimates

    Get PDF
    We show empirically that fits to the color-magnitude relation of Type Ia supernovae after optical maximum can provide accurate relative extragalactic distances. We report the discovery of an empirical color relation for Type Ia light curves: During much of the first month past maximum, the magnitudes of Type Ia supernovae defined at a given value of color index have a very small magnitude dispersion; moreover, during this period the relation between BB magnitude and BVB-V color (or BRB-R or BIB-I color) is strikingly linear, to the accuracy of existing well-measured data. These linear relations can provide robust distance estimates, in particular, by using the magnitudes when the supernova reaches a given color. After correction for light curve strech factor or decline rate, the dispersion of the magnitudes taken at the intercept of the linear color-magnitude relation are found to be around 0m^m.08 for the sub-sample of supernovae with \BVm 0m.05\le 0^m.05, and around 0m^m.11 for the sub-sample with \BVm 0m.2\le 0^m.2. This small dispersion is consistent with being mostly due to observational errors. The method presented here and the conventional light curve fitting methods can be combined to further improve statistical dispersions of distance estimates. It can be combined with the magnitude at maximum to deduce dust extinction. The slopes of the color-magnitude relation may also be used to identify intrinsically different SN Ia systems. The method provides a tool that is fundamental to using SN Ia to estimate cosmological parameters such as the Hubble constant and the mass and dark energy content of the universe.Comment: ApJ, in pres

    Optical Spectroscopy of Type Ia Supernovae

    Get PDF
    We present 432 low-dispersion optical spectra of 32 Type Ia supernovae (SNe Ia) that also have well-calibrated light curves. The coverage ranges from 6 epochs to 36 epochs of spectroscopy. Most of the data were obtained with the 1.5m Tillinghast telescope at the F. L. Whipple Observatory with typical wavelength coverage of 3700-7400A and a resolution of ~7A. The earliest spectra are thirteen days before B-band maximum; two-thirds of the SNe were observed before maximum brightness. Coverage for some SNe continues almost to the nebular phase. The consistency of the method of observation and the technique of reduction makes this an ideal data set for studying the spectroscopic diversity of SNe Ia.Comment: Accepted for publication in the Astronomical Journal, 109 pages (including data table), 44 figures, full resolution figures at http://www.noao.edu/noao/staff/matheson/Iaspec.ps.g

    No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J

    Full text link
    Left-over, ablated material from a possible non-degenerate companion can reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have searched for such material in spectra of SN 2011fe (at 294 days after the explosion) and for SN 2014J (315 days past explosion). The observations are compared with numerical models simulating the expected line emission. The spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and the expected width of these lines is about 1000 km/s. No signs of these lines can be traced in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are 0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on helium-rich ablated gas. These limits are used, in conjunction with other data, to argue that these supernovae can stem from double-degenerate systems, or from single-degenerate systems with a spun up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a main-sequence donor system with large intrinsic separation is still possible. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN 2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.Comment: 13 pages, submitted to A&

    A 5D non compact and non Ricci flat Kaluza-Klein Cosmology

    Full text link
    A model universe is proposed in the framework of 5-dimensional noncompact Kaluza-Klein cosmology which is not Ricci flat. The 4D part as the Robertson-Walker metric is coupled to conventional perfect fluid, and its extra-dimensional part is coupled to a dark pressure through a scalar field. It is shown that neither early inflation nor current acceleration of the 4D universe would happen if the non-vacuum states of the scalar field would contribute to 4D cosmology.Comment: 13 pages, major revision, published online in GR

    An Interacting Two-Fluid Scenario for Dark Energy in FRW Universe

    Full text link
    We study the evolution of the dark energy parameter within the scope of a spatially flat and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy. To obtain the deterministic solution we choose the scale factor a(t)=teta(t) = \sqrt{t e^{t}} which yields a time dependent deceleration parameter (DP). In doing so we consider the case minimally coupled with dark energy to the perfect fluid as well as direct interaction with it.Comment: 11 pages, accepted for publication in Chinese Physics Letters. Unlike the previous version the new one contains the time depending deceleration paramete

    A Chandra View of The Morphological And Spectral Evolution of Supernova Remnant 1987A

    Full text link
    We present an update on the results of our monitoring observations of the X-ray remnant of supernova (SN) 1987A with the {\it Chandra X-Ray Observatory}. As of 2002 December, we have performed a total of seven observations of SN 1987A. The high angular resolution images from the latest data reveal developments of new X-ray bright spots in the northwestern and the southwestern portions of the remnant as well as changes on the eastern side. The latest 0.5-2 keV band flux (fXf_X \sim 6 ×\times 1013^{-13} ergs cm2^{-2} s1^{-1}) is four times brighter than three years earlier. The overall X-ray emission is primarily from the blast wave shock with kTkT \sim 2.4 keV. As the blast wave approaches the dense circumstellar material, the contribution from the decelerated slow shock (kTkT \sim 0.22 keV) to the observed X-ray emission is becoming significant. The increase of this slow shock contribution over the last two years is particularly noticeable in the western half of the remnant. These results indicate that the shock front is now reaching the main body of the inner circumstellar ring. Based on the best-fit two-shock spectral model, we derive approximate densities of the X-ray-emitting regions (nen_e \sim 235 cm3^{-3} for the fast shock and nen_e \sim 7500 cm3^{-3} for the slow shock). We obtain an upper limit on the observed X-ray luminosity of any embedded point source (LXL_X \le 1.5 ×\times 1034^{34} ergs s1^{-1}) in the 2-10 keV band. The X-ray remnant continues to expand linearly at a rate of 4167 km s1^{-1}.Comment: 22 pages (ApJ preprint style), 7 Figures, Accepted by ApJ (scheduled on July 20, 2004), for high-quality Fig 1 and Fig 2, please contact [email protected]

    Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula

    Full text link
    SBS 1150+599A is a blue stellar object at high galactic latitude discovered in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are presented, demonstrating that it is very likely to be an old planetary nebula in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the diameter of the nebula to be 9.2", comparable to that estimated from spectra by Tovmassian et al. Lower limits to the central star temperature were derived using the Zanstra hydrogen and helium methods to determine that the star's effective temperature must be > 68,000K and that the nebula is optically thin. New spectra from the MMT and FLWO telescopes are presented, revealing the presence of strong [Ne V] lambda 3425, indicating that the central star temperature must be > 100,000K. With the revised diameter, new central star temperature, and an improved central star luminosity, we can constrain photoionization models for the nebula significantly better than before. Because the emission-line data set is sparse, the models are still not conclusive. Nevertheless, we confirm that this nebula is an extremely metal-poor planetary nebula, having a value for O/H that is less than 1/100 solar, and possibly as low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical Journa

    How to determine an effective potential for a variable cosmological term

    Get PDF
    It is shown that if a variable cosmological term in the present Universe is described by a scalar field with minimal coupling to gravity and with some phenomenological self-interaction potential V(φ)V(\varphi), then this potential can be unambiguously determined from the following observational data: either from the behaviour of density perturbations in dustlike matter component as a function of redshift (given the Hubble constant additionally), or from the luminosity distance as a function of redshift (given the present density of dustlike matter in terms of the critical one).Comment: Latex, 7 pages, JETP Lett., in press, 199

    Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae

    Get PDF
    We have developed a quantitative, empirical method for estimating the age of Type Ia supernovae (SNe Ia) from a single spectral epoch. The technique examines the goodness of fit of spectral features as a function of the temporal evolution of a large database of SNe Ia spectral features. When a SN Ia spectrum with good signal-to-noise ratio over the rest frame range 3800 to 6800 A is available, the precision of a spectral feature age (SFA) is (1-sigma) ~ 1.4 days. SFA estimates are made for two spectral epochs of SN 1996bj (z=0.574) to measure the rate of aging at high redshift. In the 10.05 days which elapsed between spectral observations, SN 1996bj aged 3.35 ±\pm 3.2 days, consistent with the 6.38 days of aging expected in an expanding Universe and inconsistent with no time dilation at the 96.4 % confidence level. The precision to which individual features constrain the supernova age has implications for the source of inhomogeneities among SNe Ia.Comment: 14 pages (LaTex), 7 postscript figures to Appear in the Astronomical Journa
    corecore